-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy path70_blackwell_fp8_gemm.cu
671 lines (546 loc) · 25.2 KB
/
70_blackwell_fp8_gemm.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
/***************************************************************************************************
* Copyright (c) 2024 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief A FP8 dense GEMM example for the NVIDIA Blackwell SM100 architecture using CUTLASS.
This example demonstrates minimal set of changes needed to transition from a Hopper CUTLASS 3.x
FP8 GEMM kernel (see example 54_hopper_fp8_warp_specialized_gemm) to a Blackwell SM100 FP8 GEMM kernel.
This example shows all important fusions used by FP8 gemm kernels,
i.e., scale factor for A, B, C, D tensor, the abs_max value of D tensor.
The Blackwell SM100 CUTLASS kernel uses of the following Blackwell SM100 features:
1. New series of Tensor Core MMA Instructions (tcgen05) introduced on the Blackwell architecture (sm100a)
which have 2x throughput compared to Hopper Tensor Core MMA instructions (WGMMA).
Note that Hopper WGMMA Tensor Core MMA instructions are not compatible on Blackwell (See https://docs.nvidia.com/cuda/parallel-thread-execution).
2. A new per-SM memory called Tensor Memory (TMEM) introduced on the Blackwell architecture (sm100a).
Blackwell SM100 Tensor Core MMA instructions store their accumulation results in TMEM instead of the
Register File. (Please refer to CUDA 12.8 docs on https://docs.nvidia.com/cuda/).
3. An extended flavor of the warp-specialized kernel design introduced in Hopper enabled by use of TMEM
which allows us to decouple the execution of MMA and epilogue into separate warps.
4. A new SW controlled dynamic scheduler based on cluster launch control (See https://docs.nvidia.com/cuda/parallel-thread-execution).
Usage:
$ ./examples/70_blackwell_gemm/70_blackwell_fp8_gemm --m=8192 --n=8192 --k=8192
*/
#include <iostream>
#include "cutlass/cutlass.h"
#include "cute/tensor.hpp"
#include "cutlass/tensor_ref.h"
#include "cutlass/epilogue/thread/activation.h"
#include "cutlass/gemm/dispatch_policy.hpp"
#include "cutlass/gemm/collective/collective_builder.hpp"
#include "cutlass/epilogue/dispatch_policy.hpp"
#include "cutlass/epilogue/collective/collective_builder.hpp"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/kernel/gemm_universal.hpp"
#include "cutlass/gemm/kernel/tile_scheduler_params.h"
#include "cutlass/util/command_line.h"
#include "cutlass/util/distribution.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/packed_stride.hpp"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/tensor_norm.h"
#include "cutlass/util/reference/host/gett.hpp"
#include "helper.h"
using namespace cute;
#if defined(CUTLASS_ARCH_MMA_SM100_SUPPORTED)
/////////////////////////////////////////////////////////////////////////////////////////////////
/// GEMM kernel configurations
/////////////////////////////////////////////////////////////////////////////////////////////////
// A matrix configuration
using ElementA = cutlass::float_e4m3_t; // Element type for A matrix operand
using LayoutA = cutlass::layout::RowMajor; // Layout type for A matrix operand
constexpr int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value; // Memory access granularity/alignment of A matrix in units of elements (up to 16 bytes)
// B matrix configuration
using ElementB = cutlass::float_e4m3_t; // Element type for B matrix operand
using LayoutB = cutlass::layout::ColumnMajor; // Layout type for B matrix operand
constexpr int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value; // Memory access granularity/alignment of A matrix in units of elements (up to 16 bytes)
// C/D matrix configuration
using ElementC = cutlass::float_e4m3_t; // Element type for C and D matrix operands
using LayoutC = cutlass::layout::ColumnMajor; // Layout type for C and D matrix operands
constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementC>::value; // Memory access granularity/alignment of A matrix in units of elements (up to 16 bytes)
using ElementD = ElementC;
using LayoutD = LayoutC;
constexpr int AlignmentD = AlignmentC;
// MMA type
using ElementAccumulator = float;
// Epilogue types
using ElementBias = cutlass::half_t;
using ElementCompute = float;
using ElementAux = ElementC;
using LayoutAux = LayoutC;
using ElementAmax = float;
// MMA and Cluster Tile Shapes
// Shape of the tile computed by tcgen05 MMA, could be across 2 SMs if Cluster Shape %2 == 0
using MmaTileShape_MNK = Shape<_256,_128,_64>;
// Shape of the threadblocks in a cluster
using ClusterShape_MNK = Shape<_2,_2,_1>;
// Shape of the threadblocks participating in a tcgen05 MMA. <1, 1, 1> for cta_group = 1, <2, 1, 1> for cta_group = 2
using AtomThrShape_MNK = Shape<_2, _1, _1>;
// Shape of the tile computed by each SM
using PerSmTileShape_MNK = decltype(shape_div(MmaTileShape_MNK{}, AtomThrShape_MNK{}));
using FusionOp = cutlass::epilogue::fusion::ScaledLinCombPerRowBiasEltActAmaxAux<
LayoutC, cutlass::epilogue::thread::ReLU, ElementD, ElementCompute, ElementAux, ElementAmax, ElementBias>;
using CollectiveEpilogue = typename cutlass::epilogue::collective::CollectiveBuilder<
cutlass::arch::Sm100, cutlass::arch::OpClassTensorOp,
PerSmTileShape_MNK, ClusterShape_MNK,
cutlass::epilogue::collective::EpilogueTileAuto,
ElementAccumulator, ElementCompute,
ElementC, LayoutC, AlignmentC,
ElementD, LayoutC, AlignmentD,
cutlass::epilogue::collective::EpilogueScheduleAuto,
FusionOp
>::CollectiveOp;
using CollectiveMainloop = typename cutlass::gemm::collective::CollectiveBuilder<
cutlass::arch::Sm100, cutlass::arch::OpClassTensorOp,
ElementA, LayoutA, AlignmentA,
ElementB, LayoutB, AlignmentB,
ElementAccumulator,
MmaTileShape_MNK, ClusterShape_MNK,
cutlass::gemm::collective::StageCountAutoCarveout<static_cast<int>(sizeof(typename CollectiveEpilogue::SharedStorage))>,
cutlass::gemm::collective::KernelScheduleAuto
>::CollectiveOp;
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
Shape<int,int,int,int>,
CollectiveMainloop,
CollectiveEpilogue,
void>; // Default to ClusterLaunchControl (CLC) based tile scheduler
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
// Extract information from Gemm kernel.
using EpilogueOutputOp = typename Gemm::EpilogueOutputOp;
using ElementScalar = typename EpilogueOutputOp::ElementScalar;
using ElementAmax = typename EpilogueOutputOp::ElementAmax;
using ActivationFunctor = typename EpilogueOutputOp::ActivationFn;
using StrideA = typename Gemm::GemmKernel::StrideA;
using StrideB = typename Gemm::GemmKernel::StrideB;
using StrideC = typename Gemm::GemmKernel::StrideC;
using StrideD = typename Gemm::GemmKernel::StrideD;
using StrideAux = StrideC;
constexpr bool IsDFp8 =
cute::is_same_v<ElementD, cutlass::float_e4m3_t> or
cute::is_same_v<ElementD, cutlass::float_e5m2_t>;
constexpr bool IsAuxFp8 =
cute::is_same_v<ElementAux, cutlass::float_e4m3_t> or
cute::is_same_v<ElementAux, cutlass::float_e5m2_t>;
/// Initialization
StrideA stride_A;
StrideB stride_B;
StrideC stride_C;
StrideD stride_D;
StrideAux stride_aux;
uint64_t seed;
cutlass::HostTensor<ElementA , LayoutA > tensor_A;
cutlass::HostTensor<ElementB , LayoutB > tensor_B;
cutlass::HostTensor<ElementC , LayoutC > tensor_C;
cutlass::HostTensor<ElementD , LayoutD > tensor_D;
cutlass::HostTensor<ElementD , LayoutD > tensor_ref_D;
cutlass::HostTensor<ElementAux, LayoutAux> tensor_aux;
cutlass::HostTensor<ElementAux, LayoutAux> tensor_ref_aux;
using LayoutScalar = cutlass::layout::PackedVectorLayout;
cutlass::HostTensor<ElementScalar, LayoutScalar> scalar_alpha;
cutlass::HostTensor<ElementScalar, LayoutScalar> scalar_beta;
cutlass::HostTensor<ElementScalar, LayoutScalar> scale_A;
cutlass::HostTensor<ElementScalar, LayoutScalar> scale_B;
cutlass::HostTensor<ElementScalar, LayoutScalar> scale_C;
cutlass::HostTensor<ElementScalar, LayoutScalar> scale_D;
cutlass::HostTensor<ElementScalar, LayoutScalar> scale_aux;
cutlass::HostTensor<ElementAmax , LayoutScalar> abs_max_D;
cutlass::HostTensor<ElementAmax , LayoutScalar> reference_abs_max_D;
cutlass::HostTensor<ElementAmax , LayoutScalar> abs_max_aux;
cutlass::HostTensor<ElementAmax , LayoutScalar> reference_abs_max_aux;
#endif // defined(CUTLASS_ARCH_MMA_SM100_SUPPORTED)
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Testbed utility types
/////////////////////////////////////////////////////////////////////////////////////////////////
// Command line options parsing
struct Options {
bool help = false;
float alpha = 1.f, beta = 0.f;
float scale_a = 1.f, scale_b = 1.f, scale_c = 1.f, scale_d = 1.f, scale_aux = 1.f;
bool device_scale = false;
bool save_aux = true;
bool save_amax = true;
int iterations = 1000;
int m = 1024, n = 512, k = 1024, l = 1;
// Parses the command line
void parse(int argc, char const **args) {
cutlass::CommandLine cmd(argc, args);
if (cmd.check_cmd_line_flag("help")) {
help = true;
return;
}
cmd.get_cmd_line_argument("m", m);
cmd.get_cmd_line_argument("n", n);
cmd.get_cmd_line_argument("k", k);
cmd.get_cmd_line_argument("l", l);
cmd.get_cmd_line_argument("alpha", alpha, 1.f);
cmd.get_cmd_line_argument("beta", beta, 0.f);
cmd.get_cmd_line_argument("scale_a", scale_a, 1.f);
cmd.get_cmd_line_argument("scale_b", scale_b, 1.f);
cmd.get_cmd_line_argument("scale_c", scale_c, 1.f);
cmd.get_cmd_line_argument("scale_d", scale_d, 1.f);
cmd.get_cmd_line_argument("scale_aux", scale_aux, 1.f);
cmd.get_cmd_line_argument("device_scale", device_scale, false);
cmd.get_cmd_line_argument("save_aux", save_aux, true);
cmd.get_cmd_line_argument("save_amax", save_amax, true);
cmd.get_cmd_line_argument("iterations", iterations);
}
/// Prints the usage statement.
std::ostream & print_usage(std::ostream &out) const {
out << "70_blackwell_fp8_gemm\n\n"
<< " Blackwell FP8 GEMM using a Warp Specialized kernel.\n\n"
<< "Options:\n\n"
<< " --help If specified, displays this usage statement\n\n"
<< " --m=<int> Sets the M extent of the GEMM\n"
<< " --n=<int> Sets the N extent of the GEMM\n"
<< " --k=<int> Sets the K extent of the GEMM\n"
<< " --l=<int> Sets the l extent (batch) of the GEMM\n"
<< " --alpha=<f32> Epilogue scalar alpha\n"
<< " --beta=<f32> Epilogue scalar beta\n"
<< " --scale_a=<f32> Scaling factor for A\n"
<< " --scale_b=<f32> Scaling factor for B\n"
<< " --scale_c=<f32> Scaling factor for C\n"
<< " --scale_d=<f32> Scaling factor for D (ignored for non-fp8 D)\n"
<< " --scale_aux=<f32> Scaling factor for the auxiliary tensor (ignored for non-fp8 aux)\n"
<< " --device_scale=<bool> Copy scalars to device memory before kernel launch (default: false)\n"
<< " --save_aux=<bool> Save the pre-activation as an auxiliary tensor (default: true)\n"
<< " --save_amax=<bool> Save the pre-scaled max absolute value of any fp8 outputs (aux and/or D) (default: true)\n"
<< " --iterations=<int> Number of profiling iterations to perform.\n\n";
out
<< "\n\nExamples:\n\n"
<< "$ " << "70_blackwell_fp8_gemm" << " --m=1024 --n=512 --k=1024 --alpha=2 --beta=0.707 \n\n";
return out;
}
/// Compute performance in GFLOP/s
double gflops(double runtime_s) const
{
// Two flops per multiply-add
uint64_t flop = uint64_t(2) * m * n * k;
double gflop = double(flop) / double(1.0e9);
return gflop / runtime_s;
}
};
/// Result structure
struct Result
{
double avg_runtime_ms;
double gflops;
cutlass::Status status;
cudaError_t error;
bool passed;
Result(
double avg_runtime_ms = 0,
double gflops = 0,
cutlass::Status status = cutlass::Status::kSuccess,
cudaError_t error = cudaSuccess)
:
avg_runtime_ms(avg_runtime_ms), gflops(gflops), status(status), error(error), passed(false)
{}
};
#if defined(CUTLASS_ARCH_MMA_SM100_SUPPORTED)
/////////////////////////////////////////////////////////////////////////////////////////////////
/// GEMM setup and evaluation
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Helper to initialize a block of device data
template <typename Element, typename Layout>
bool initialize_tensor(
cutlass::TensorView<Element, Layout> view,
uint64_t seed) {
double scope_max, scope_min;
int bits_input = cutlass::sizeof_bits<Element>::value;
int bits_output = cutlass::sizeof_bits<Element>::value;
if (bits_input == 1) {
scope_max = 2;
scope_min = 0;
}
else if (bits_input <= 8) {
scope_max = 2;
scope_min = -2;
}
else if (bits_output == 16) {
scope_max = 5;
scope_min = -5;
}
else {
scope_max = 8;
scope_min = -8;
}
cutlass::reference::host::TensorFillRandomUniform(
view, seed, scope_max, scope_min, 0);
return true;
}
/// Initialize operands to be used in the GEMM and reference GEMM
void initialize(const Options &options) {
stride_A = cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(options.m, options.k, options.l));
stride_B = cutlass::make_cute_packed_stride(StrideB{}, cute::make_shape(options.n, options.k, options.l));
stride_C = cutlass::make_cute_packed_stride(StrideC{}, cute::make_shape(options.m, options.n, options.l));
stride_D = cutlass::make_cute_packed_stride(StrideD{}, cute::make_shape(options.m, options.n, options.l));
stride_aux = stride_D;
auto a_coord = cutlass::make_Coord(options.m * options.l, options.k);
auto c_coord = cutlass::make_Coord(options.m * options.l, options.n);
auto b_coord = cutlass::make_Coord(options.k, options.n * options.l);
tensor_A.resize(a_coord);
tensor_B.resize(b_coord);
tensor_C.resize(c_coord);
tensor_D.resize(c_coord);
tensor_ref_D.resize(c_coord);
initialize_tensor(tensor_A.host_view(), seed + 2022);
initialize_tensor(tensor_B.host_view(), seed + 2023);
initialize_tensor(tensor_C.host_view(), seed + 2024);
tensor_A.sync_device();
tensor_B.sync_device();
tensor_C.sync_device();
tensor_D.sync_device();
if (options.save_aux) {
tensor_aux.resize(c_coord);
tensor_aux.sync_device();
tensor_ref_aux.resize(c_coord);
}
if (options.device_scale) {
scalar_alpha.resize(cutlass::make_Coord(1));
scalar_beta.resize(cutlass::make_Coord(1));
scale_A.resize(cutlass::make_Coord(1));
scale_B.resize(cutlass::make_Coord(1));
scale_C.resize(cutlass::make_Coord(1));
scale_D.resize(cutlass::make_Coord(1));
scale_aux.resize(cutlass::make_Coord(1));
cutlass::reference::host::TensorFill(scalar_alpha.host_view(), options.alpha);
cutlass::reference::host::TensorFill(scalar_beta.host_view(), options.beta);
cutlass::reference::host::TensorFill(scale_A.host_view(), options.scale_a);
cutlass::reference::host::TensorFill(scale_B.host_view(), options.scale_b);
cutlass::reference::host::TensorFill(scale_C.host_view(), options.scale_c);
cutlass::reference::host::TensorFill(scale_D.host_view(), options.scale_d);
cutlass::reference::host::TensorFill(scale_aux.host_view(), options.scale_aux);
scalar_alpha.sync_device();
scalar_beta.sync_device();
scale_A.sync_device();
scale_B.sync_device();
scale_C.sync_device();
scale_D.sync_device();
scale_aux.sync_device();
}
if (IsDFp8 && options.save_amax) {
abs_max_D.resize(cutlass::make_Coord(1));
abs_max_D.sync_device();
reference_abs_max_D.resize(cutlass::make_Coord(1));
}
if (IsAuxFp8 && options.save_aux && options.save_amax) {
abs_max_aux.resize(cutlass::make_Coord(1));
abs_max_aux.sync_device();
reference_abs_max_aux.resize(cutlass::make_Coord(1));
}
}
/// Populates a Gemm::Arguments structure from the given commandline options
typename Gemm::Arguments args_from_options(const Options &options)
{
typename Gemm::Arguments arguments{
cutlass::gemm::GemmUniversalMode::kGemm,
{options.m, options.n, options.k, options.l},
{tensor_A.device_data(), stride_A, tensor_B.device_data(), stride_B},
{
{}, // epilogue.thread
tensor_C.device_data(), stride_C,
tensor_D.device_data(), stride_D
}
};
auto &fusion_args = arguments.epilogue.thread;
fusion_args.alpha = options.alpha;
fusion_args.beta = options.beta;
fusion_args.alpha_ptr = scalar_alpha.device_data();
fusion_args.beta_ptr = scalar_beta.device_data();
fusion_args.scale_a = options.scale_a;
fusion_args.scale_b = options.scale_b;
fusion_args.scale_c = options.scale_c;
fusion_args.scale_a_ptr = scale_A.device_data();
fusion_args.scale_b_ptr = scale_B.device_data();
fusion_args.scale_c_ptr = scale_C.device_data();
// ignored if tensor types are not fp8
fusion_args.scale_d = options.scale_d;
fusion_args.scale_aux = options.scale_aux;
fusion_args.scale_d_ptr = scale_D.device_data();
fusion_args.scale_aux_ptr = scale_aux.device_data();
// leaving/setting these as nullptr disables the fusion at runtime
fusion_args.bias_ptr = nullptr;
if (options.save_aux) {
fusion_args.aux_ptr = tensor_aux.device_data();
fusion_args.dAux = stride_aux;
if (options.save_amax) {
fusion_args.amax_aux_ptr = abs_max_aux.device_data();
}
}
if (options.save_amax) {
fusion_args.amax_D_ptr = abs_max_D.device_data();
}
return arguments;
}
bool verify(const Options &options) {
//
// Compute reference output
//
// Create instantiation for device reference gemm kernel
auto A = cute::make_tensor(tensor_A.host_data(),
cute::make_layout(cute::make_shape(options.m, options.k, options.l), stride_A));
auto B = cute::make_tensor(tensor_B.host_data(),
cute::make_layout(cute::make_shape(options.n, options.k, options.l), stride_B));
auto C = cute::make_tensor(tensor_C.host_data(),
cute::make_layout(cute::make_shape(options.m, options.n, options.l), stride_C));
auto D = cute::make_tensor(tensor_ref_D.host_data(),
cute::make_layout(cute::make_shape(options.m, options.n, options.l), stride_D));
auto Aux = cute::make_tensor(tensor_ref_aux.host_data(),
cute::make_layout(cute::make_shape(options.m, options.n, options.l), stride_aux));
using unused_t = decltype(D);
cutlass::reference::host::GettMainloopParams<ElementAccumulator, decltype(A), decltype(B)> mainloop_params{A, B};
cutlass::reference::host::GettEpilogueParams<
ElementScalar,
ElementScalar,
ElementAccumulator,
ElementCompute,
decltype(C),
decltype(D),
unused_t, // bias
decltype(Aux),
unused_t, // valpha
unused_t, // vbeta
ActivationFunctor
> epilogue_params;
epilogue_params.C = C;
epilogue_params.D = D;
epilogue_params.Aux = Aux;
epilogue_params.alpha = options.alpha;
epilogue_params.beta = options.beta;
epilogue_params.scale_a = options.scale_a;
epilogue_params.scale_b = options.scale_b;
epilogue_params.scale_c = options.scale_c;
epilogue_params.scale_d = options.scale_d;
epilogue_params.scale_aux = options.scale_aux;
epilogue_params.abs_max_D = reference_abs_max_D.host_data();
epilogue_params.abs_max_Aux = reference_abs_max_aux.host_data();
// get reference result
cutlass::reference::host::Gemm3x(mainloop_params, epilogue_params);
// compare_reference
tensor_D.sync_host();
bool passed = cutlass::reference::host::TensorEquals(tensor_ref_D.host_view(), tensor_D.host_view());
if (IsDFp8 && options.save_amax) {
abs_max_D.sync_host();
passed &= abs_max_D.at(cutlass::make_Coord(0)) == reference_abs_max_D.at(cutlass::make_Coord(0));
}
if (options.save_aux) {
tensor_aux.sync_host();
passed &= cutlass::reference::host::TensorEquals(tensor_ref_aux.host_view(), tensor_aux.host_view());
if (IsAuxFp8 && options.save_amax) {
abs_max_aux.sync_host();
passed &= abs_max_aux.at(cutlass::make_Coord(0)) == reference_abs_max_aux.at(cutlass::make_Coord(0));
}
}
return passed;
}
/// Execute a given example GEMM computation
template <typename Gemm>
int run(Options &options)
{
initialize(options);
// Instantiate CUTLASS kernel depending on templates
Gemm gemm;
// Create a structure of gemm kernel arguments suitable for invoking an instance of Gemm
auto arguments = args_from_options(options);
// Using the arguments, query for extra workspace required for matrix multiplication computation
size_t workspace_size = Gemm::get_workspace_size(arguments);
// Allocate workspace memory
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
// Check if the problem size is supported or not
CUTLASS_CHECK(gemm.can_implement(arguments));
// Initialize CUTLASS kernel with arguments and workspace pointer
CUTLASS_CHECK(gemm.initialize(arguments, workspace.get()));
// Correctness / Warmup iteration
CUTLASS_CHECK(gemm.run());
// Check if output from CUTLASS kernel and reference kernel are equal or not
Result result;
result.passed = verify(options);
std::cout << " Disposition: " << (result.passed ? "Passed" : "Failed") << std::endl;
if (!result.passed) {
exit(-1);
}
// Run profiling loop
if (options.iterations > 0)
{
GpuTimer timer;
timer.start();
for (int iter = 0; iter < options.iterations; ++iter) {
CUTLASS_CHECK(gemm.run());
}
timer.stop();
// Compute average runtime and GFLOPs.
float elapsed_ms = timer.elapsed_millis();
result.avg_runtime_ms = double(elapsed_ms) / double(options.iterations);
result.gflops = options.gflops(result.avg_runtime_ms / 1000.0);
std::cout << " Problem Size: " << options.m << 'x' << options.n << 'x' << options.k << 'x' << options.l << std::endl;
std::cout << " Avg runtime: " << result.avg_runtime_ms << " ms" << std::endl;
std::cout << " GFLOPS: " << result.gflops << std::endl;
}
return 0;
}
#endif // defined(CUTLASS_ARCH_MMA_SM100_SUPPORTED)
///////////////////////////////////////////////////////////////////////////////////////////////////
int main(int argc, char const **args) {
// CUTLASS must be compiled with CUDA 12.0 Toolkit to run this example
// and must have compute capability at least sm100a.
if (__CUDACC_VER_MAJOR__ < 12) {
std::cerr << "This example requires CUDA 12 or newer.\n";
// Returning zero so this test passes on older Toolkits. Its actions are no-op.
return 0;
}
cudaDeviceProp props;
int current_device_id;
CUDA_CHECK(cudaGetDevice(¤t_device_id));
CUDA_CHECK(cudaGetDeviceProperties(&props, current_device_id));
cudaError_t error = cudaGetDeviceProperties(&props, 0);
if (props.major != 10 || props.minor != 0) {
std::cerr << "This example requires a GPU with compute capability 100a)." << std::endl;
return 0;
}
//
// Parse options
//
Options options;
options.parse(argc, args);
if (options.help) {
options.print_usage(std::cout) << std::endl;
return 0;
}
//
// Run
//
#if defined(CUTLASS_ARCH_MMA_SM100_SUPPORTED)
run<Gemm>(options);
#endif // defined(CUTLASS_ARCH_MMA_SM100_SUPPORTED)
return 0;
}
/////////////////////////////////////////////////////////////////////////////////////////////////