Skip to content

Latest commit

 

History

History
279 lines (228 loc) · 7.33 KB

File metadata and controls

279 lines (228 loc) · 7.33 KB

Movielens 1m Movie Recommendation Serving Based on Behavior Sequence Transformer Model MLOps

Introduction

This repository is to deploy transformer-based movie recommendation as a Serverless API trained by Movielens dataset to predict what movie users like most according to their basic demographic feature and sequence of movie views.

Training pipeline is at the different repository: Please refer this github repo: https://github.com/Nelsonlin0321/ml-bst-movielens1m-recommender-training to know more about how we trained the model with MLflow and Prefect Orchestration

How to deploy your own Mlflow on EC2: Please refer this instruction: https://github.com/Nelsonlin0321/mlops-zoomcamp/blob/main/02-experiment-tracking/mlflow_on_aws.md

MLOps Workflow

MLOps Features

Features Description Implemented
Experiment tracking and model registry We track the model training experiment and register models using Mlflow ✔️
Workflow Orchestration We use Prefect orchestract training data pipeline ✔️
Model deployment Model with FastAPI Deployed to AWS Lambda With API Gateway ✔️
Reproducibility We log all training artifact to make sure reproducibility ✔️
Best practices (DevOps) Pylint static code analysis ✔️
Best practices (DevOps) Unit tests in CICD to make sure continue integration ✔️
Best practices (DevOps) Integration test in CICD to make sure continue delivery ✔️
Best practices (DevOps) Implement CI/CD using Github action workflow ✔️
Best practices (DevOps) Terraform Infrastructure as Codes ✔️

Guidance to Deploy

Environment Settings

.env file

AWS Secrets are used to download s3 artifacts. You can use the repository artifacts but you have to remove "artifacts" from .dockerignore

export AWS_DEFAULT_REGION=
export AWS_ACCESS_KEY_ID=
export AWS_SECRET_ACCESS_KEY=
export ARTIFACTS_URL=s3://s3-mlflow-artifacts-storage/mlflow/15/7008c7131367497a8dd99e2b2d506f96
export PORT=5050
export WORKERS=2
export THREADS=2
export BATCH_SIZE=1024

Run Recommender API Locally

python -m venv venv
source venv/bin/activate
pip3 install -r requirements.txt
pip3 install torch --index-url https://download.pytorch.org/whl/cpu

source .env
uvicorn server:app --reload --reload-dir src --host 0.0.0.0 --port 8000

Run Recommender API Using Docker

Build the docker

docker build -t bst-movielens1m-recommender-serving:latest . --platform linux/arm64/v8

.env.docker

AWS_DEFAULT_REGION=ap-southeast-1
AWS_ACCESS_KEY_ID=
AWS_SECRET_ACCESS_KEY=
ARTIFACTS_URL=
PORT=5050
WORKERS=2
THREADS=2
BATCH_SIZE=256

Run Docker Container

docker run --env-file .env.docker -p 5050:5050 -it bst-movielens1m-recommender-serving:latest

or

docker compose up

Call The API

fastapi docs swagger for information: the http://0.0.0.0:8000/docs

curl -X 'POST' \
  'http://0.0.0.0:5050/recommend' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "movie_ids": [
    1,
    2,
    3,
    4,
    5
  ],
  "user_age": 20,
  "sex": "M",
  "topk": 3
}'

Build AWS Lambda FastAPI Container

image_name=movielens1m-recommender-lambda
docker build -t ${image_name}:latest -f ./Dockerfile.aws.lambda  . --platform linux/arm64/v8

Test the Lambda

image_name=movielens1m-recommender-lambda
docker run --env-file .env.docker -p 9000:8080 --name lambda-recommender -it --rm ${image_name}:latest
# for debug
docker exec -it lambda-recommender /bin/bash
# TEST healthcheck
curl -XPOST "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{
    "resource": "/healthcheck",
    "path": "/healthcheck",
    "httpMethod": "GET",
    "requestContext": {
    },
    "isBase64Encoded": false
}'

# OUTPUT
# {"statusCode": 200, "headers": {"content-length": "95", "content-type": "application/json"}, "multiValueHeaders": {}, "body": "{\"message\":\"The server is up since 2023-08-12 03:57:28\",\"start_uct_time\":\"2023-08-12 03:57:28\"}", "isBase64Encoded": false}% 

# TEST Recommend Endpoint
curl -XPOST "http://localhost:9000/2015-03-31/functions/function/invocations" -d '{
    "resource": "/recommend",
    "path": "/recommend",
    "httpMethod": "POST",
    "requestContext": {
        "resourcePath": "/recommend",
        "httpMethod": "POST"
    },
    "body": "{\"movie_ids\": [1, 2, 3, 4], \"user_age\": 23, \"sex\": \"M\", \"topk\": 1}",
    "isBase64Encoded": false
}'

#OUTPUT
# {"statusCode": 200, "headers": {"content-length": "154", "content-type": "application/json"}, "multiValueHeaders": {}, "body": "[{\"movie_id\":50,\"title\":\"Usual Suspects, The (1995)\",\"genres\":[\"Crime\",\"Thriller\"],\"release_year\":1995,\"origin_title\":\"Usual Suspects, The\",\"rating\":5.0}]", "isBase64Encoded": false}% 

Push To ECR

source .env
account_id=932682266260
region=ap-southeast-1
image_name=movielens1m-recommender-lambda
repo_name=${image_name}
aws ecr get-login-password --region ${region} | docker login --username AWS --password-stdin ${account_id}.dkr.ecr.${region}.amazonaws.com
aws ecr create-repository \
    --repository-name ${repo_name} \
    --region ${region}
docker tag ${image_name}:latest ${account_id}.dkr.ecr.${region}.amazonaws.com/${repo_name}:latest
docker push ${account_id}.dkr.ecr.ap-southeast-1.amazonaws.com/${repo_name}:latest

Deploy To AWS with Infra Codes:

cd ./infra
terraform init
terraform apply

Get API URL

terraform output -json > ./output.json
{
  "apigateway_invoke_url": {
    "sensitive": false,
    "type": "string",
    "value": "https://7jufjyexya.execute-api.ap-southeast-1.amazonaws.com/prod"
  }
}

Test API

curl -X 'POST' \
  'https://7jufjyexya.execute-api.ap-southeast-1.amazonaws.com/prod/recommend' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
  "movie_ids": [ 3903, 3914, 3617 ],
  "user_age": 20,
  "sex": "M",
  "topk": 3
}'

Recommendation Response:

[
    {
        "movie_id": 50,
        "title": "Usual Suspects, The (1995)",
        "genres": [
            "Crime",
            "Thriller"
        ],
        "release_year": 1995,
        "origin_title": "Usual Suspects, The",
        "predicted_rating": 5.0
    },
    {
        "movie_id": 527,
        "title": "Schindler's List (1993)",
        "genres": [
            "Drama",
            "War"
        ],
        "release_year": 1993,
        "origin_title": "Schindler's List",
        "predicted_rating": 5.0
    },
    {
        "movie_id": 750,
        "title": "Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb (1963)",
        "genres": [
            "Sci-Fi",
            "War"
        ],
        "release_year": 1963,
        "origin_title": "Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb",
        "predicted_rating": 5.0
    }
]
curl -X 'GET' \
  'https://7jufjyexya.execute-api.ap-southeast-1.amazonaws.com/prod/healthcheck' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json'

heathcheck Response:

{"message":"The server is up since 2023-08-13 07:52:09","start_uct_time":"2023-08-13 07:52:09"}