|
| 1 | +#include <iostream> |
| 2 | +#include <random> |
| 3 | +#include <vector> |
| 4 | +#include <algorithm> |
| 5 | + |
| 6 | +// The wrapper macro is required, that __LINE__ is correct pointing to the line, where the check fails |
| 7 | +#define checkCudaError(ans) \ |
| 8 | + { \ |
| 9 | + checkCudaErrorFunc((ans), __FILE__, __LINE__); \ |
| 10 | + } |
| 11 | + |
| 12 | +inline void checkCudaErrorFunc(cudaError_t err, const char *file, int line) |
| 13 | +{ |
| 14 | + if (err != cudaSuccess) |
| 15 | + { |
| 16 | + std::cout << "\r" << file << ":" << line << " -> Cuda Error " << err << ": " << cudaGetErrorString(err) << std::endl; |
| 17 | + std::cout << "Aborting..." << std::endl; |
| 18 | + exit(0); |
| 19 | + } |
| 20 | +} |
| 21 | + |
| 22 | +// The reduction algorithms divide all elements in logical blocks with the size of threads. |
| 23 | +// Each local block is reduced to a single element. |
| 24 | +// A grid stride loop maps the logical blocks to cuda blocks (both has the same size). |
| 25 | +// The output array has the size of the number of logical blocks. |
| 26 | +// Uses only global memory. |
| 27 | +__global__ void reduce_gm(unsigned int const size, unsigned int *const input, unsigned int *const output) |
| 28 | +{ |
| 29 | + int const id = threadIdx.x + blockIdx.x * blockDim.x; |
| 30 | + int const stride = blockDim.x * gridDim.x; |
| 31 | + // use grid stride loop to distribute the logical blocks to cuda blocks. |
| 32 | + for (int block_offset_id = id, virtual_block_id = blockIdx.x; block_offset_id < size; block_offset_id += stride, virtual_block_id += gridDim.x) |
| 33 | + { |
| 34 | + // reduce all elements of logical block to a single element. |
| 35 | + for (int max_threads_blocks = blockDim.x / 2; max_threads_blocks > 0; max_threads_blocks /= 2) |
| 36 | + { |
| 37 | + if (threadIdx.x < max_threads_blocks) |
| 38 | + { |
| 39 | + input[block_offset_id] += input[block_offset_id + max_threads_blocks]; |
| 40 | + } |
| 41 | + __syncthreads(); |
| 42 | + } |
| 43 | + if (threadIdx.x == 0) |
| 44 | + { |
| 45 | + // write single element to output |
| 46 | + output[virtual_block_id] = input[block_offset_id]; |
| 47 | + } |
| 48 | + __syncthreads(); |
| 49 | + } |
| 50 | +} |
| 51 | + |
| 52 | +// The reduction algorithms divide all elements in logical blocks with the size of threads. |
| 53 | +// Each local block is reduced to a single element. |
| 54 | +// A grid stride loop maps the logical blocks to cuda blocks (both has the same size). |
| 55 | +// The output array has the size of the number of logical blocks. |
| 56 | +// Uses shared memory to speed up. |
| 57 | +template <auto LOGICAL_BLOCK_SIZE> |
| 58 | +__global__ void reduce_sm(unsigned int const size, unsigned int const upper_bound_size, unsigned int *const input, unsigned int *const output) |
| 59 | +{ |
| 60 | + __shared__ unsigned int reduction_memory[LOGICAL_BLOCK_SIZE]; |
| 61 | + |
| 62 | + int const id = threadIdx.x + blockIdx.x * blockDim.x; |
| 63 | + int const stride = blockDim.x * gridDim.x; |
| 64 | + // use grid stride loop to distribute the logical blocks to cuda blocks. |
| 65 | + for (int block_offset_id = id, virtual_block_id = blockIdx.x; block_offset_id < upper_bound_size; block_offset_id += stride, virtual_block_id += gridDim.x) |
| 66 | + { |
| 67 | + if (block_offset_id < size) |
| 68 | + { |
| 69 | + reduction_memory[threadIdx.x] = input[block_offset_id]; |
| 70 | + } |
| 71 | + else |
| 72 | + { |
| 73 | + reduction_memory[threadIdx.x] = 0; |
| 74 | + } |
| 75 | + // reduce all elements of logical block to a single element. |
| 76 | + __syncthreads(); |
| 77 | + for (int max_threads_blocks = blockDim.x / 2; max_threads_blocks > 0; max_threads_blocks /= 2) |
| 78 | + { |
| 79 | + if (threadIdx.x < max_threads_blocks) |
| 80 | + { |
| 81 | + reduction_memory[threadIdx.x] += reduction_memory[threadIdx.x + max_threads_blocks]; |
| 82 | + } |
| 83 | + __syncthreads(); |
| 84 | + } |
| 85 | + |
| 86 | + if (threadIdx.x == 0) |
| 87 | + { |
| 88 | + // write single element to output |
| 89 | + output[virtual_block_id] = reduction_memory[0]; |
| 90 | + } |
| 91 | + } |
| 92 | +} |
| 93 | + |
| 94 | +// Helper function -> should be replaced by html visualization ;-) |
| 95 | +template <typename T> |
| 96 | +void print_vec(std::vector<T> vec) |
| 97 | +{ |
| 98 | + for (auto const v : vec) |
| 99 | + { |
| 100 | + std::cout << v << " "; |
| 101 | + } |
| 102 | + std::cout << std::endl; |
| 103 | +} |
| 104 | + |
| 105 | +int main(int argc, char **argv) |
| 106 | +{ |
| 107 | + int constexpr blocks = 10; |
| 108 | + int constexpr threads = 32; |
| 109 | + |
| 110 | + // number of input elements |
| 111 | + unsigned int const size = 1632; |
| 112 | + size_t const data_size_byte = sizeof(unsigned int) * size; |
| 113 | + |
| 114 | + // number of logical blocks |
| 115 | + size_t output_elements = size / threads; |
| 116 | + // add an extra element, if logical blocks does not fit in cuda blocks |
| 117 | + output_elements += (size % threads == 0) ? 0 : 1; |
| 118 | + size_t const output_size_byte = sizeof(unsigned int) * output_elements; |
| 119 | + |
| 120 | + std::vector<unsigned int> h_data(size); |
| 121 | + std::vector<unsigned int> h_output(output_elements, 0); |
| 122 | + |
| 123 | + // initialize data matrix with random numbers betweem 0 and 10 |
| 124 | + std::uniform_int_distribution<unsigned int> distribution( |
| 125 | + 0, |
| 126 | + 10); |
| 127 | + std::default_random_engine generator; |
| 128 | + std::generate( |
| 129 | + h_data.begin(), |
| 130 | + h_data.end(), |
| 131 | + [&distribution, &generator]() |
| 132 | + { return distribution(generator); }); |
| 133 | + |
| 134 | + // calculate result for verification |
| 135 | + unsigned int const expected_result = std::reduce(h_data.begin(), h_data.end()); |
| 136 | + |
| 137 | + unsigned int *d_data = nullptr; |
| 138 | + unsigned int *d_output = nullptr; |
| 139 | + |
| 140 | + checkCudaError(cudaMalloc((void **)&d_data, data_size_byte)); |
| 141 | + checkCudaError(cudaMalloc((void **)&d_output, output_size_byte)); |
| 142 | + checkCudaError(cudaMemcpy(d_data, h_data.data(), data_size_byte, cudaMemcpyHostToDevice)); |
| 143 | + |
| 144 | + bool const sm_version = false; |
| 145 | + |
| 146 | + if (!sm_version) |
| 147 | + { |
| 148 | + if (size % threads) |
| 149 | + { |
| 150 | + std::cerr << "size needs to be multiple of number of threads" << std::endl; |
| 151 | + exit(1); |
| 152 | + } |
| 153 | + reduce_gm<<<blocks, threads>>>(size, d_data, d_output); |
| 154 | + } |
| 155 | + else |
| 156 | + { |
| 157 | + size_t const upper_bound_size = output_elements * threads; |
| 158 | + reduce_sm<threads><<<blocks, threads>>>(size, upper_bound_size, d_data, d_output); |
| 159 | + } |
| 160 | + checkCudaError(cudaGetLastError()); |
| 161 | + |
| 162 | + checkCudaError(cudaMemcpy(h_output.data(), d_output, output_size_byte, cudaMemcpyDeviceToHost)); |
| 163 | + |
| 164 | + unsigned int sum = 0; |
| 165 | + |
| 166 | + // Reduce all sums of the logical blocks on CPU. |
| 167 | + // Otherwise a second kernel or cuda cooperative groups are required to performe block synchronization. |
| 168 | + for (unsigned int const v : h_output) |
| 169 | + { |
| 170 | + sum += v; |
| 171 | + } |
| 172 | + |
| 173 | + if (sum == expected_result) |
| 174 | + { |
| 175 | + std::cout << "reduction kernel works correctly" << std::endl; |
| 176 | + } |
| 177 | + else |
| 178 | + { |
| 179 | + std::cout << "sum: " << sum << std::endl; |
| 180 | + std::cout << "expected result: " << expected_result << std::endl; |
| 181 | + } |
| 182 | + |
| 183 | + return 0; |
| 184 | +} |
0 commit comments