forked from R0BiN00Z/Multimodal_Sentiment_Analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_decision_fusion.py
533 lines (448 loc) · 20 KB
/
train_decision_fusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import numpy as np
from tqdm import tqdm
from transformers import AutoTokenizer
from models.decision_fusion_model import DecisionFusionModel
import json
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.metrics import confusion_matrix
class MOSEIDataset(Dataset):
def __init__(self, text_path, audio_path, label_path, split='train', sample_ratio=0.3):
self.text_data = np.load(text_path)
self.audio_data = np.load(audio_path)
self.labels = np.load(label_path)
self.tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
# 数据采样
if sample_ratio < 1.0 and split == 'train':
total_samples = len(self.labels)
sample_size = int(total_samples * sample_ratio)
# 确保每个类别都有足够的样本
indices = []
for label in range(3): # 3个类别
label_indices = np.where(self.labels == label)[0]
n_samples = int(len(label_indices) * sample_ratio)
selected = np.random.choice(label_indices, n_samples, replace=False)
indices.extend(selected)
# 随机打乱
np.random.shuffle(indices)
self.text_data = self.text_data[indices]
self.audio_data = self.audio_data[indices]
self.labels = self.labels[indices]
# 确保数据对齐
assert len(self.text_data) == len(self.audio_data) == len(self.labels), \
f"Data lengths mismatch: text={len(self.text_data)}, audio={len(self.audio_data)}, labels={len(self.labels)}"
# 打印数据集信息
print(f"\n{split} 集信息:")
print(f"样本数量: {len(self.labels)}")
unique, counts = np.unique(self.labels, return_counts=True)
print("标签分布:")
for label, count in zip(unique, counts):
print(f"类别 {label}: {count} 样本 ({count/len(self.labels)*100:.2f}%)")
def __len__(self):
return len(self.text_data)
def __getitem__(self, idx):
# 获取文本和音频特征
text = self.text_data[idx]
audio = self.audio_data[idx]
label = self.labels[idx]
# 将文本特征转换为字符串
text_str = " ".join([str(x) for x in text])
# 对文本进行tokenization
text_encoding = self.tokenizer(
text_str,
max_length=256, # 减小序列长度
padding='max_length',
truncation=True,
return_tensors='pt'
)
# 将音频特征扩展为三维张量
audio = np.expand_dims(np.expand_dims(audio, axis=0), axis=0)
return {
'text_input_ids': text_encoding['input_ids'].squeeze(0),
'text_attention_mask': text_encoding['attention_mask'].squeeze(0),
'audio': torch.FloatTensor(audio),
'label': torch.LongTensor([label])
}
def train(model, train_loader, val_loader, device, num_epochs=5):
# 定义损失函数
criterion = nn.CrossEntropyLoss()
# 定义优化器
optimizer = optim.Adam(model.parameters(), lr=2e-4)
# 学习率调度器
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer, mode='min', factor=0.1, patience=2, verbose=True
)
best_val_loss = float('inf')
# 用于记录模态性能
modality_performance = {
'train': {'fused': [], 'audio': [], 'text': []},
'val': {'fused': [], 'audio': [], 'text': []}
}
# 梯度累积步数
gradient_accumulation_steps = 4
for epoch in range(num_epochs):
# 训练阶段
model.train()
train_metrics = {
'loss': 0.0,
'fused_correct': 0,
'audio_correct': 0,
'text_correct': 0,
'total': 0
}
optimizer.zero_grad() # 在epoch开始时清零梯度
progress_bar = tqdm(train_loader, desc=f'Epoch {epoch+1}/{num_epochs}')
for batch_idx, batch in enumerate(progress_bar):
# 获取数据并移动到设备
text_input_ids = batch['text_input_ids'].to(device)
text_attention_mask = batch['text_attention_mask'].to(device)
audio = batch['audio'].to(device)
labels = batch['label'].squeeze().to(device)
# 前向传播
outputs = model(audio, text_input_ids, text_attention_mask)
# 计算各个损失
fused_loss = criterion(outputs['fused_logits'], labels)
audio_loss = criterion(outputs['audio_logits'], labels)
text_loss = criterion(outputs['text_logits'], labels)
# 总损失
loss = (fused_loss + 0.5 * (audio_loss + text_loss)) / gradient_accumulation_steps
# 反向传播
loss.backward()
# 梯度累积
if (batch_idx + 1) % gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
# 计算准确率
fused_pred = outputs['fused_logits'].argmax(dim=1)
audio_pred = outputs['audio_logits'].argmax(dim=1)
text_pred = outputs['text_logits'].argmax(dim=1)
train_metrics['loss'] += loss.item() * gradient_accumulation_steps
train_metrics['fused_correct'] += (fused_pred == labels).sum().item()
train_metrics['audio_correct'] += (audio_pred == labels).sum().item()
train_metrics['text_correct'] += (text_pred == labels).sum().item()
train_metrics['total'] += labels.size(0)
# 获取当前融合权重
weights = model.get_fusion_weights()
# 更新进度条
progress_bar.set_postfix({
'loss': loss.item() * gradient_accumulation_steps,
'fused_acc': train_metrics['fused_correct'] / train_metrics['total'],
'audio_acc': train_metrics['audio_correct'] / train_metrics['total'],
'text_acc': train_metrics['text_correct'] / train_metrics['total'],
'audio_w': f"{weights['audio_weight']:.2f}",
'text_w': f"{weights['text_weight']:.2f}"
})
# 计算训练指标
train_loss = train_metrics['loss'] / len(train_loader)
train_fused_acc = train_metrics['fused_correct'] / train_metrics['total']
train_audio_acc = train_metrics['audio_correct'] / train_metrics['total']
train_text_acc = train_metrics['text_correct'] / train_metrics['total']
# 验证阶段
model.eval()
val_metrics = {
'loss': 0.0,
'fused_correct': 0,
'audio_correct': 0,
'text_correct': 0,
'total': 0
}
with torch.no_grad():
for batch in val_loader:
text_input_ids = batch['text_input_ids'].to(device)
text_attention_mask = batch['text_attention_mask'].to(device)
audio = batch['audio'].to(device)
labels = batch['label'].squeeze().to(device)
outputs = model(audio, text_input_ids, text_attention_mask)
fused_loss = criterion(outputs['fused_logits'], labels)
audio_loss = criterion(outputs['audio_logits'], labels)
text_loss = criterion(outputs['text_logits'], labels)
loss = fused_loss + 0.5 * (audio_loss + text_loss)
# 计算准确率
fused_pred = outputs['fused_logits'].argmax(dim=1)
audio_pred = outputs['audio_logits'].argmax(dim=1)
text_pred = outputs['text_logits'].argmax(dim=1)
val_metrics['loss'] += loss.item()
val_metrics['fused_correct'] += (fused_pred == labels).sum().item()
val_metrics['audio_correct'] += (audio_pred == labels).sum().item()
val_metrics['text_correct'] += (text_pred == labels).sum().item()
val_metrics['total'] += labels.size(0)
# 计算验证指标
val_loss = val_metrics['loss'] / len(val_loader)
val_fused_acc = val_metrics['fused_correct'] / val_metrics['total']
val_audio_acc = val_metrics['audio_correct'] / val_metrics['total']
val_text_acc = val_metrics['text_correct'] / val_metrics['total']
# 记录性能
modality_performance['train']['fused'].append(train_fused_acc)
modality_performance['train']['audio'].append(train_audio_acc)
modality_performance['train']['text'].append(train_text_acc)
modality_performance['val']['fused'].append(val_fused_acc)
modality_performance['val']['audio'].append(val_audio_acc)
modality_performance['val']['text'].append(val_text_acc)
# 打印训练和验证结果
print(f'\nEpoch {epoch+1}/{num_epochs}:')
print(f'Train - Loss: {train_loss:.4f}, Fused Acc: {train_fused_acc:.4f}, Audio Acc: {train_audio_acc:.4f}, Text Acc: {train_text_acc:.4f}')
print(f'Val - Loss: {val_loss:.4f}, Fused Acc: {val_fused_acc:.4f}, Audio Acc: {val_audio_acc:.4f}, Text Acc: {val_text_acc:.4f}')
# 获取并打印融合权重
weights = model.get_fusion_weights()
print(f'Fusion Weights - Audio: {weights["audio_weight"]:.3f}, Text: {weights["text_weight"]:.3f}')
# 更新学习率
scheduler.step(val_loss)
# 保存最佳模型
if val_loss < best_val_loss:
best_val_loss = val_loss
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'val_loss': val_loss,
'modality_performance': modality_performance
}, 'best_model.pth')
print('Saved best model!')
return modality_performance
def evaluate_model(model, test_loader, device):
"""在测试集上评估模型性能"""
model.eval()
metrics = {
'loss': 0.0,
'fused_correct': 0,
'audio_correct': 0,
'text_correct': 0,
'total': 0,
'confusion_matrix': {
'fused': np.zeros((3, 3)),
'audio': np.zeros((3, 3)),
'text': np.zeros((3, 3))
}
}
criterion = nn.CrossEntropyLoss()
with torch.no_grad():
for batch in tqdm(test_loader, desc='Testing'):
text_input_ids = batch['text_input_ids'].to(device)
text_attention_mask = batch['text_attention_mask'].to(device)
audio = batch['audio'].to(device)
labels = batch['label'].squeeze().to(device)
outputs = model(audio, text_input_ids, text_attention_mask)
fused_loss = criterion(outputs['fused_logits'], labels)
audio_loss = criterion(outputs['audio_logits'], labels)
text_loss = criterion(outputs['text_logits'], labels)
loss = fused_loss + 0.5 * (audio_loss + text_loss)
# 计算预测结果
fused_pred = outputs['fused_logits'].argmax(dim=1)
audio_pred = outputs['audio_logits'].argmax(dim=1)
text_pred = outputs['text_logits'].argmax(dim=1)
# 更新指标
metrics['loss'] += loss.item()
metrics['fused_correct'] += (fused_pred == labels).sum().item()
metrics['audio_correct'] += (audio_pred == labels).sum().item()
metrics['text_correct'] += (text_pred == labels).sum().item()
metrics['total'] += labels.size(0)
# 更新混淆矩阵
for i, j in zip(labels.cpu().numpy(), fused_pred.cpu().numpy()):
metrics['confusion_matrix']['fused'][i][j] += 1
for i, j in zip(labels.cpu().numpy(), audio_pred.cpu().numpy()):
metrics['confusion_matrix']['audio'][i][j] += 1
for i, j in zip(labels.cpu().numpy(), text_pred.cpu().numpy()):
metrics['confusion_matrix']['text'][i][j] += 1
# 计算各项指标
results = {
'loss': metrics['loss'] / len(test_loader),
'fused_accuracy': metrics['fused_correct'] / metrics['total'],
'audio_accuracy': metrics['audio_correct'] / metrics['total'],
'text_accuracy': metrics['text_correct'] / metrics['total'],
'confusion_matrix': metrics['confusion_matrix']
}
# 计算每个类别的 F1 分数
for modality in ['fused', 'audio', 'text']:
cm = metrics['confusion_matrix'][modality]
precision = np.diag(cm) / np.sum(cm, axis=0)
recall = np.diag(cm) / np.sum(cm, axis=1)
f1 = 2 * (precision * recall) / (precision + recall)
results[f'{modality}_f1'] = {
'negative': f1[0],
'neutral': f1[1],
'positive': f1[2]
}
return results
def plot_training_process(modality_performance, save_dir='plots'):
"""Plot training process visualization"""
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# Set font
plt.rcParams['font.sans-serif'] = ['Arial']
plt.rcParams['axes.unicode_minus'] = False
# Plot training and validation accuracy
plt.figure(figsize=(12, 6))
epochs = range(1, len(modality_performance['train']['fused']) + 1)
# Training accuracy
plt.subplot(1, 2, 1)
plt.plot(epochs, modality_performance['train']['fused'], 'b-', label='Fusion Model')
plt.plot(epochs, modality_performance['train']['audio'], 'r--', label='Audio Only')
plt.plot(epochs, modality_performance['train']['text'], 'g-.', label='Text Only')
plt.title('Training Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.grid(True)
# Validation accuracy
plt.subplot(1, 2, 2)
plt.plot(epochs, modality_performance['val']['fused'], 'b-', label='Fusion Model')
plt.plot(epochs, modality_performance['val']['audio'], 'r--', label='Audio Only')
plt.plot(epochs, modality_performance['val']['text'], 'g-.', label='Text Only')
plt.title('Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.savefig(os.path.join(save_dir, 'training_process.png'))
plt.close()
def plot_test_results(test_results, save_dir='plots'):
"""Plot test results visualization"""
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# Set font
plt.rcParams['font.sans-serif'] = ['Arial']
plt.rcParams['axes.unicode_minus'] = False
# 1. Accuracy comparison bar chart
plt.figure(figsize=(10, 6))
accuracies = [
test_results['fused_accuracy'],
test_results['audio_accuracy'],
test_results['text_accuracy']
]
plt.bar(['Fusion Model', 'Audio Only', 'Text Only'], accuracies)
plt.title('Accuracy Comparison Across Modalities')
plt.ylabel('Accuracy')
plt.grid(True, axis='y')
for i, v in enumerate(accuracies):
plt.text(i, v, f'{v:.4f}', ha='center', va='bottom')
plt.savefig(os.path.join(save_dir, 'accuracy_comparison.png'))
plt.close()
# 2. F1 score comparison
plt.figure(figsize=(12, 6))
modalities = ['fused', 'audio', 'text']
labels = ['Negative', 'Neutral', 'Positive']
x = np.arange(len(labels))
width = 0.25
for i, modality in enumerate(modalities):
f1_scores = [
test_results[f'{modality}_f1']['negative'],
test_results[f'{modality}_f1']['neutral'],
test_results[f'{modality}_f1']['positive']
]
plt.bar(x + i*width, f1_scores, width,
label=['Fusion Model', 'Audio Only', 'Text Only'][i])
plt.xlabel('Sentiment Category')
plt.ylabel('F1 Score')
plt.title('F1 Scores by Modality and Sentiment')
plt.xticks(x + width, labels)
plt.legend()
plt.grid(True, axis='y')
plt.savefig(os.path.join(save_dir, 'f1_scores.png'))
plt.close()
# 3. Confusion matrix heatmaps
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
titles = ['Fusion Model', 'Audio Only', 'Text Only']
for i, (modality, title) in enumerate(zip(['fused', 'audio', 'text'], titles)):
cm = test_results['confusion_matrix'][modality]
sns.heatmap(cm, annot=True, fmt='d', ax=axes[i], cmap='Blues')
axes[i].set_title(f'{title} Confusion Matrix')
axes[i].set_xlabel('Predicted')
axes[i].set_ylabel('True')
axes[i].set_xticklabels(['Negative', 'Neutral', 'Positive'])
axes[i].set_yticklabels(['Negative', 'Neutral', 'Positive'])
plt.tight_layout()
plt.savefig(os.path.join(save_dir, 'confusion_matrices.png'))
plt.close()
def main():
# 设置设备
if torch.cuda.is_available():
device = torch.device("cuda")
print(f"Using GPU: {torch.cuda.get_device_name(0)}")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
print(f'Using device: {device}')
# 创建数据集
data_dir = 'data/CMU_MOSEI/aligned'
train_dataset = MOSEIDataset(
os.path.join(data_dir, 'train_text.npy'),
os.path.join(data_dir, 'train_audio.npy'),
os.path.join(data_dir, 'train_labels.npy'),
'train',
sample_ratio=0.3 # 使用30%训练数据
)
val_dataset = MOSEIDataset(
os.path.join(data_dir, 'valid_text.npy'),
os.path.join(data_dir, 'valid_audio.npy'),
os.path.join(data_dir, 'valid_labels.npy'),
'valid',
sample_ratio=0.3 # 使用30%验证数据
)
# 创建数据加载器
train_loader = DataLoader(
train_dataset,
batch_size=32, # 减小批处理大小
shuffle=True,
num_workers=4,
pin_memory=True
)
val_loader = DataLoader(
val_dataset,
batch_size=32, # 减小批处理大小
shuffle=False,
num_workers=4,
pin_memory=True
)
# 创建模型
model = DecisionFusionModel(
audio_input_dim=1, # 因为我们的音频特征是一维的
hidden_dim=128,
num_classes=3 # 3个类别:消极、中性、积极
).to(device)
# 打印模型信息
print("\nModel Architecture:")
print(model)
print(f"\nTotal Parameters: {sum(p.numel() for p in model.parameters())}")
# 训练模型
modality_performance = train(model, train_loader, val_loader, device)
# 绘制训练过程图表
plot_training_process(modality_performance)
# 创建测试数据集
test_dataset = MOSEIDataset(
os.path.join(data_dir, 'test_text.npy'),
os.path.join(data_dir, 'test_audio.npy'),
os.path.join(data_dir, 'test_labels.npy'),
'test',
sample_ratio=1.0 # 测试集使用全部数据
)
test_loader = DataLoader(
test_dataset,
batch_size=128,
shuffle=False,
num_workers=4,
pin_memory=True
)
# 加载最佳模型
checkpoint = torch.load('best_model.pth')
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
best_val_loss = checkpoint['val_loss']
modality_performance = checkpoint['modality_performance']
# 评估模型
test_results = evaluate_model(model, test_loader, device)
# 绘制测试结果图表
plot_test_results(test_results)
print("\nPlots have been saved in 'plots' directory:")
print("1. training_process.png - Training Process Visualization")
print("2. accuracy_comparison.png - Accuracy Comparison")
print("3. f1_scores.png - F1 Score Comparison")
print("4. confusion_matrices.png - Confusion Matrices")
if __name__ == '__main__':
main()