-
Notifications
You must be signed in to change notification settings - Fork 2
/
positional_embedding.py
165 lines (143 loc) · 5.54 KB
/
positional_embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import math
import torch
def encode_single(d_model, value, max_period=10000.0):
"""
:param d_model: dimension of the model
:param value: the value to encode
:param max_period: the maximum allowed value
:return: length*d_model position matrix
"""
if d_model % 2 != 0:
raise ValueError(
"Cannot use sin/cos positional encoding with "
"odd dim (got dim={:d})".format(d_model),
)
pe = torch.zeros(d_model)
div_term = torch.exp(
torch.arange(0, d_model, 2, dtype=torch.float)
* -(math.log(max_period) / d_model),
)
pe[0::2] = torch.sin(value * div_term)
pe[1::2] = torch.cos(value * div_term)
return pe
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32, device=t.device)
/ half,
)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def offset_sequence_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: an (N, T) Tensor of sequences of time offsets
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, T, dim) Tensor of positional embeddings.
"""
N, T = t.shape
flattened = torch.flatten(t)
embedding = timestep_embedding(flattened, dim, max_period)
return torch.reshape(embedding, (N, T, dim))
def position_sequence_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: an (N, T, D) Tensor of sequences of D dimensional positions.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, T, D * dim) Tensor of positional embeddings.
"""
N, T, D = t.shape
flattened = torch.flatten(t)
embedding = timestep_embedding(flattened, dim, max_period)
return torch.reshape(embedding, (N, T, D * dim))
def positionalencoding(d_model, values, max_period=10000.0):
"""
:param d_model: dimension of the model
:param values: the values to encode
:param max_period: the maximum allowed value
:return: length*d_model position matrix
"""
if d_model % 2 != 0:
raise ValueError(
"Cannot use sin/cos positional encoding with "
"odd dim (got dim={:d})".format(d_model),
)
pe = torch.zeros(len(values), d_model)
position = values.unsqueeze(1)
div_term = torch.exp(
torch.arange(0, d_model, 2, dtype=torch.float)
* -(math.log(max_period) / d_model),
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
return pe
def positionalencoding1d(d_model, length):
"""
:param d_model: dimension of the model
:param length: length of positions
:return: length*d_model position matrix
"""
if d_model % 2 != 0:
raise ValueError(
"Cannot use sin/cos positional encoding with "
"odd dim (got dim={:d})".format(d_model),
)
pe = torch.zeros(2, d_model)
position = torch.arange(-50, 50, 100).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, d_model, 2, dtype=torch.float) * -(math.log(10000.0) / d_model),
)
pe[:, 0::2] = torch.sin(position.float() * div_term)
pe[:, 1::2] = torch.cos(position.float() * div_term)
return pe
def positionalencoding2d(d_model, height, width):
"""
:param d_model: dimension of the model
:param height: height of the positions
:param width: width of the positions
:return: d_model*height*width position matrix
"""
if d_model % 4 != 0:
raise ValueError(
"Cannot use sin/cos positional encoding with "
"odd dimension (got dim={:d})".format(d_model),
)
pe = torch.zeros(d_model, height, width)
# Each dimension use half of d_model
d_model = int(d_model / 2)
div_term = torch.exp(torch.arange(0.0, d_model, 2) * -(math.log(10000.0) / d_model))
pos_w = torch.arange(0.0, width).unsqueeze(1)
pos_h = torch.arange(0.0, height).unsqueeze(1)
pe[0:d_model:2, :, :] = (
torch.sin(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1)
)
pe[1:d_model:2, :, :] = (
torch.cos(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1)
)
pe[d_model::2, :, :] = (
torch.sin(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width)
)
pe[d_model + 1 :: 2, :, :] = (
torch.cos(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width)
)
return pe
if __name__ == "__main__":
import matplotlib.pyplot as plt
pe = positionalencoding(128, torch.tensor([-50, 50]))
plt.imshow(pe)
plt.show()