Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

模型适配进度(拓展) #163

Open
kokuro-asahi opened this issue Nov 6, 2023 · 89 comments
Open

模型适配进度(拓展) #163

kokuro-asahi opened this issue Nov 6, 2023 · 89 comments
Assignees

Comments

@kokuro-asahi
Copy link
Contributor

kokuro-asahi commented Nov 6, 2023

总计:8+14+9+26+21+10+3+6+6+10+3+9+11+4+88=228

领域 功能 基础模型 支持方式 负责人 状态 展开数量 Onelab负责人 OneLab公开项目链接
cv classification EfficientNet_b0 flowvision ke 完成 8 li https://www.oneflow.cloud/drill/#/project/public/code?id=fa5438d8c14b8fa64429da52ea3aaa4b
cv classification EfficientNet_b1 flowvision cui 完成 8 li https://www.oneflow.cloud/drill/#/project/public/code?id=0919cef11021fa3729d9678b27bb5434
cv classification EfficientNet_b2 flowvision cui 完成 8 li https://www.oneflow.cloud/drill/#/project/public/code?id=fa8c4ace23affba27863ea9f56bbb662
cv classification EfficientNet_b3 flowvision cui 完成 8 li https://www.oneflow.cloud/drill/#/project/public/code?id=9486b2d7f8523973daf7b90d7fb9fc17
cv classification EfficientNet_b4 flowvision cui 完成 8 li https://www.oneflow.cloud/drill/#/project/public/code?id=d33198119b667ea422696576e5c67a4e
cv classification EfficientNet_b5 flowvision cui 完成 8 li https://www.oneflow.cloud/drill/#/project/public/code?id=d4c9a2d6db1a934b3896b56b92a03e74
cv classification EfficientNet_b6 flowvision cui 完成 8 li https://www.oneflow.cloud/drill/#/project/public/code?id=f9d51026c6d13eaca244a4d4c3eca1c3
cv classification EfficientNet_b7 flowvision cui 完成 8 li https://www.oneflow.cloud/drill/#/project/public/code?id=9b2d0d5ad34bf2eceff55f77007a260d
cv classification regnet_y_400mf flowvision cui 完成 14 li https://www.oneflow.cloud/drill/#/project/public/code?id=74db0fcbf0b7b42d74a5c37d1dcd8c8d
cv classification regnet_y_800mf flowvision cui 完成 14 li https://www.oneflow.cloud/drill/#/project/public/code?id=7af27966f711f8d0cf07b51d40a57992
cv classification regnet_y_1_6gf flowvision cui 完成 14 li https://www.oneflow.cloud/drill/#/project/public/code?id=579f7eb5c7d26076962e0721d1d709f9
cv classification regnet_y_3_2gf flowvision cui 完成 14 li https://www.oneflow.cloud/drill/#/project/public/code?id=5affa8b3893616466b0242397924a247
cv classification regnet_y_8gf flowvision cui 完成 14 li https://www.oneflow.cloud/drill/#/project/public/code?id=a38f54a87436578dafa7ac15927a9af9
cv classification regnet_y_16gf flowvision cui 完成 14 li https://www.oneflow.cloud/drill/#/project/public/code?id=35607cd00b6c22f5fd02254818b400ae
cv classification regnet_y_32gf flowvision cui 完成 14 li https://www.oneflow.cloud/drill/#/project/public/code?id=dfb022ad6b5b7e3b431c84e548dd53fa
cv classification regnet_x_400mf flowvision cui 完成 14 li https://www.oneflow.cloud/drill/#/project/public/code?id=ed0d790aa2d1e911a72daa7e6605a97c
cv classification regnet_x_800mf flowvision cui 完成 14 li https://www.oneflow.cloud/drill/#/project/public/code?id=d0097d4399eac0f6c31fe3dc29dacb17
cv classification regnet_x_1_6gf flowvision cui 完成 14 li https://www.oneflow.cloud/drill/#/project/public/code?id=9b2b5d00b3ff83198dfdc48a9085deb0
cv classification regnet_x_3_2gf flowvision cui 完成 14 li https://www.oneflow.cloud/drill/#/project/public/code?id=240b02c57ab1c27e98024acaf3aef70a
cv classification regnet_x_8gf flowvision cui 完成 14 li https://www.oneflow.cloud/drill/#/project/public/code?id=4e76ee1a1129ab9c2c5f903e6ffb7d39
cv classification regnet_x_16gf flowvision cui 完成 14 li https://www.oneflow.cloud/drill/#/project/public/code?id=36bca178cb147c64c3251ef38082c593
cv classification regnet_x_32gf flowvision cui 完成 14 li https://www.oneflow.cloud/drill/#/project/public/code?id=4b9bb2aa6ad9857fb31c96299fce9051
cv classification rexnetv1_1_0 flowvision cui 完成 9 li https://www.oneflow.cloud/drill/#/project/public/code?id=f8e263b706369a6846c13985edad8433
cv classification rexnetv1_1_3 flowvision cui 完成 9 li https://www.oneflow.cloud/drill/#/project/public/code?id=5acd5c7d3dcffd712779101d3af9e0ba
cv classification rexnetv1_1_5 flowvision cui 完成 9 li https://www.oneflow.cloud/drill/#/project/public/code?id=edc766c2407bb08ca908516322282a19
cv classification rexnetv1_2_0 flowvision cui 完成 9 li https://www.oneflow.cloud/drill/#/project/public/code?id=7e28ee4f9157562fa795899038da2a6e
cv classification rexnetv1_3_0 flowvision cui 完成 9 li https://www.oneflow.cloud/drill/#/project/public/code?id=44f0cd0f722917ff90e921412d2fd775
cv classification rexnet_lite_1_0 flowvision cui 完成 9 li https://www.oneflow.cloud/drill/#/project/public/code?id=8c0935ce218c7fe14721a54de380cf95
cv classification rexnet_lite_1_3 flowvision cui 完成 9 li https://www.oneflow.cloud/drill/#/project/public/code?id=44a6598a4f7ce345a5d7c3ba458eb7e4
cv classification rexnet_lite_1_5 flowvision cui 完成 9 li https://www.oneflow.cloud/drill/#/project/public/code?id=bc98489e6cc245e8348dd3289d237f97
cv classification rexnet_lite_2_0 flowvision cui 完成 9 li https://www.oneflow.cloud/drill/#/project/public/code?id=24f5e35e6056919730c4cabd354144c3
cv classification vit_tiny_patch16_224 flowvision zhang 完成 26 li https://www.oneflow.cloud/drill/#/project/public/code?id=25334d0e04ca945c25b331b67d2eb550
cv classification vit_tiny_patch16_384 flowvision zhang 完成 26 li https://www.oneflow.cloud/drill/#/project/public/code?id=e1302a0101857135ab62132d1e35aeae
cv classification vit_small_patch32_224 flowvision zhang 完成 26 li https://www.oneflow.cloud/drill/#/project/public/code?id=2648e2213ad95a43b35631ca58e0be84
cv classification vit_small_patch32_384 flowvision zhang 完成 26 li https://www.oneflow.cloud/drill/#/project/public/code?id=12768b29f94c5be820d11e9d5a3ae81f
cv classification vit_small_patch16_224 flowvision zhang 完成 26 li https://www.oneflow.cloud/drill/#/project/public/code?id=281132f74d7608078277ee4b46ef1701
cv classification vit_small_patch16_384 flowvision zhang 完成 26 li https://www.oneflow.cloud/drill/#/project/public/code?id=3f579f7f1350223ea18797a1a204c1e8
cv classification vit_base_patch32_224 flowvision zhang 完成 26 li https://www.oneflow.cloud/drill/#/project/public/code?id=18e3f3be24228e68ec8abaf3c51d1a08
cv classification vit_base_patch32_384 flowvision zhang 完成 26 li https://www.oneflow.cloud/drill/#/project/public/code?id=c76367e43afccb54509ef57a47641a2b
cv classification vit_base_patch16_384 flowvision zhang 完成 26 li https://www.oneflow.cloud/drill/#/project/public/code?id=5ef00487de1c66d4b59056aabe95e92a
cv classification vit_base_patch8_224 flowvision zhang 完成 26 li https://www.oneflow.cloud/drill/#/project/public/code?id=9b637c392fe656a10c5401cb205e5a1e
cv classification vit_base_patch16_224 flowvision 完成 26 li https://www.oneflow.cloud/drill/#/project/public/code?id=ae6f744c9a856d2f04784742f9161143
cv classification vit_large_patch32_384 flowvision zhang 完成 26 li https://www.oneflow.cloud/drill/#/project/public/code?id=96c37fd309acf0c9a007753e0782a181
cv classification vit_large_patch16_224 flowvision zhang 完成 26 li https://www.oneflow.cloud/drill/#/project/public/code?id=73350d451067d9a7164cf5f60f2915cd
cv classification vit_large_patch16_384 flowvision zhang 完成 26 li https://www.oneflow.cloud/drill/#/project/public/code?id=20efdf3e5ce3526d180e9d68f03c533a
cv classification vit_base_patch16_224_sam flowvision zhang 完成 26 li https://www.oneflow.cloud/drill/#/project/public/code?id=be4351753e1262778745eb1098c49c57
cv classification vit_base_patch32_224_sam flowvision zhang 完成 26 li https://www.oneflow.cloud/drill/#/project/public/code?id=c73d578cc1f4059e05e7367b69c69bf7
cv classification vit_tiny_patch16_224_in21k flowvision zhang 没有ImageNet 21k数据集 26
cv classification vit_small_patch32_224_in21k flowvision zhang 没有ImageNet 21k数据集 26
cv classification vit_small_patch16_224_in21k flowvision zhang 没有ImageNet 21k数据集 26
cv classification vit_base_patch32_224_in21k flowvision zhang 没有ImageNet 21k数据集 26
cv classification vit_base_patch16_224_in21k flowvision zhang 没有ImageNet 21k数据集 26
cv classification vit_base_patch8_224_in21k flowvision zhang 没有ImageNet 21k数据集 26
cv classification vit_large_patch32_224_in21k flowvision zhang 没有ImageNet 21k数据集 26
cv classification vit_large_patch16_224_in21k flowvision zhang 没有ImageNet 21k数据集 26
cv classification vit_huge_patch14_224_in21k flowvision zhang 没有ImageNet 21k数据集 26
cv classification vit_base_patch16_224_miil_in21k flowvision zhang 没有ImageNet 21k数据集 26
cv classification vit_base_patch16_224_miil flowvision zhang 完成 26 li https://www.oneflow.cloud/drill/#/project/public/code?id=21423b30bd3ea7e717c486c5c96fabe8
cv classification deit_tiny_patch16_224 flowvision zhang 完成 22 li https://www.oneflow.cloud/drill/#/project/public/code?id=13cfd9108b2f72cb92a99a846e98e6ff
cv classification deit_base_patch16_224 flowvision zhang 完成 22 li https://www.oneflow.cloud/drill/#/project/public/code?id=af5947962e7720e97a570703a9e53694
cv classification deit_base_patch16_384 flowvision zhang 完成 22 li https://www.oneflow.cloud/drill/#/project/public/code?id=606e242389cccb930249be457130dbf3
cv classification deit_tiny_distilled_patch16_224 flowvision zhang 完成 22 li https://www.oneflow.cloud/drill/#/project/public/code?id=5891ddd5f03d6af0b2aeb690ced37b5d
cv classification deit_small_distilled_patch16_224 flowvision zhang 完成 22 li https://www.oneflow.cloud/drill/#/project/public/code?id=849921cbc3a4c0b31f22203c0b60c690
cv classification deit_base_distilled_patch16_224 flowvision zhang 完成 22 li https://www.oneflow.cloud/drill/#/project/public/code?id=9a58d5387296f5673265405938ec8d65
cv classification deit_base_distilled_patch16_384 flowvision zhang 完成 22 li https://www.oneflow.cloud/drill/#/project/public/code?id=b1ebb442d627b9350681e2c8c97c74c2
cv classification deit_base_patch16_LS_224 flowvision zhang 完成 22 li https://www.oneflow.cloud/drill/#/project/public/code?id=d17491afb893e3d0ab7915f53fcb674f
cv classification deit_base_patch16_LS_224_in21k flowvision zhang 完成 22 li https://www.oneflow.cloud/drill/#/project/public/code?id=425be3891ca118082c05635fd2305914
cv classification deit_base_patch16_LS_384 flowvision cui 完成 22 li https://www.oneflow.cloud/drill/#/project/public/code?id=ff8e43ef6752f38d46c6575296d244a6
cv classification deit_base_patch16_LS_384_in21k flowvision cui 完成 22 li https://www.oneflow.cloud/drill/#/project/public/code?id=6f1deac6410a3db19d7d22befba4fc0b
cv classification deit_huge_patch14_LS_224 flowvision cui 完成 22 li https://www.oneflow.cloud/drill/#/project/public/code?id=8a5517f5f84c5f6a2497c7307c1e6899
cv classification deit_huge_patch14_LS_224_in21k flowvision cui 完成 22 li https://www.oneflow.cloud/drill/#/project/public/code?id=8a5517f5f84c5f6a2497c7307c1e6899
cv classification deit_large_patch16_LS_224_in21k flowvision cui 进行中 22 li
cv classification deit_large_patch16_LS_384_in21k flowvision cui 完成 22 li https://www.oneflow.cloud/drill/#/project/public/code?id=274caa0440f9df12e989678ed205c0d4
cv classification deit_small_patch16_LS_224_in21k flowvision cui 完成 22 li https://www.oneflow.cloud/drill/#/project/public/code?id=30fbf529f1d61ac77b72514f8e913cc8
cv classification deit_small_patch16_224 flowvision li 完成 22 li https://www.oneflow.cloud/drill/#/project/public/code?id=ffabc32455e8966ad33bb07974f194bf
cv classification deit_small_patch16_LS_384 flowvision cui 完成 22 li https://www.oneflow.cloud/drill/#/project/public/code?id=e2e3159b7bcbd13a91e7736ee6ea3960
cv classification deit_small_patch16_LS_384_in21k flowvision cui 进行中 22 li https://www.oneflow.cloud/drill/#/project/public/code?id=9be2c26a99c860a3f98c3f0a5b854e61
cv classification deit_large_patch16_LS_224 flowvision li 完成 22 li https://www.oneflow.cloud/drill/#/project/public/code?id=37ff4dabe9c2b9132e76badcabce7506
cv classification deit_small_patch16_LS_224 flowvision li 完成 22 li https://www.oneflow.cloud/drill/#/project/public/code?id=21f5789060c865a30c1eec1aade0c2c1
cv classification deit_large_patch16_LS_384 flowvision li 完成 22 li https://www.oneflow.cloud/drill/#/project/public/code?id=457dd8d362220fe32d340bfee7b7f306
cv classification mlp_mixer_s16_224 flowvision ke 无模型 10
cv classification mlp_mixer_s32_224 flowvision ke 无模型 10
cv classification mlp_mixer_b16_224 flowvision ke 完成 10 li https://www.oneflow.cloud/drill/#/project/public/code?id=6680d967c8d66d5ad6716cb3e1d4e63a
cv classification mlp_mixer_b32_224 flowvision ke 无模型 10
cv classification mlp_mixer_b16_224_in21k flowvision ke infer低 10
cv classification mlp_mixer_l16_224 flowvision ke 完成 10 li https://www.oneflow.cloud/drill/#/project/public/code?id=9d39de61bbaa96f995494981606131bf
cv classification mlp_mixer_l32_224 flowvision ke 无模型 10
cv classification mlp_mixer_l16_224_in21k flowvision ke infer低 10
cv classification mlp_mixer_b16_224_miil flowvision ke infer低 10
cv classification mlp_mixer_b16_224_miil_in21k flowvision ke infer低 10
cv classification convmixer_768_32_relu flowvision ke 完成 3 li https://www.oneflow.cloud/drill/#/project/public/code?id=ea73a6af66d18116bd17159bd43dfd09
cv classification convmixer_1024_20 flowvision ke 完成 3 li https://www.oneflow.cloud/drill/#/project/public/code?id=d4cae7556245781c1da91665be4a4a2a
cv classification convmixer_1536_20 flowvision ke 完成 3 li https://www.oneflow.cloud/drill/#/project/public/code?id=9ab2b324f3643859826de05b0e0b0b09
cv classification res2net101_26w_4s flowvision ke 完成 6 li https://www.oneflow.cloud/drill/#/project/public/code?id=cd1e229dae70bfe32e33d57798e5b62e
cv classification res2net50_14w_8s flowvision ke 完成 6 li https://www.oneflow.cloud/drill/#/project/public/code?id=ab6afe87aa33c278311d63b649f6b117
cv classification res2net50_26w_4s flowvision ke 完成 6 li https://www.oneflow.cloud/drill/#/project/public/code?id=77a0ad1c8078b75cba5d823bca361c04
cv classification res2net50_26w_6s flowvision ke 完成 6 li https://www.oneflow.cloud/drill/#/project/public/code?id=fa0a61d5d72247d22863c9392b48f89c
cv classification res2net50_26w_8s flowvision ke 完成 6 li https://www.oneflow.cloud/drill/#/project/public/code?id=156564fb425715a833a255b3736f9e9d
cv classification res2net50_48w_2s flowvision ke 完成 6 li https://www.oneflow.cloud/drill/#/project/public/code?id=1ddc5d5f68e2d3a75d9a9c8d9a59c97a
cv classification cait_M48 flowvision ke 完成 6 li https://www.oneflow.cloud/drill/#/project/public/code?id=405fc951ffa80c9dcc3a605d41587de4
cv classification cait_M36 flowvision ke 完成 6 li https://www.oneflow.cloud/drill/#/project/public/code?id=c88925b7c61385982b8b25658467ed7d
cv classification cait_S36 flowvision ke 完成 6 li https://www.oneflow.cloud/drill/#/project/public/code?id=a9165b582fca4851946455e1158fa5d5
cv classification cait_S24 flowvision ke 完成 6 li https://www.oneflow.cloud/drill/#/project/public/code?id=ef302a9ec1241961ad2d9ff21dd28a1f
cv classification cait_S24_224 flowvision ke 完成 6 li https://www.oneflow.cloud/drill/#/project/public/code?id=ef9a11c3daa419e068f913d6c1da49be
cv classification cait_XS24 flowvision ke 完成 6 li https://www.oneflow.cloud/drill/#/project/public/code?id=ec1e9e9df444a8012a699020d7876c3f
cv classification dla34 flowvision ke 完成 10 li https://www.oneflow.cloud/drill/#/project/public/code?id=92865fd08123c84dd002ad934dab9f30
cv classification dla46_c flowvision ke 完成 10 li https://www.oneflow.cloud/drill/#/project/public/code?id=4a23dbc75bd431049450b709f1e2dc82
cv classification dla46x_c flowvision ke 完成 10 li https://www.oneflow.cloud/drill/#/project/public/code?id=48e8f80f732ce1ff49401c239079799b
cv classification dla60x_c flowvision ke 完成 10 li https://www.oneflow.cloud/drill/#/project/public/code?id=72a36495db48f1f3f4830108eed027df
cv classification dla60 flowvision ke 完成 10 li https://www.oneflow.cloud/drill/#/project/public/code?id=0adcb76c0580f05ec53d87b3ed2689bb
cv classification dla60x flowvision ke 完成 10 li https://www.oneflow.cloud/drill/#/project/public/code?id=a44cc9aa071ec6171c0aae3ccc7eea69
cv classification dla102 flowvision ke 完成 10 li https://www.oneflow.cloud/drill/#/project/public/code?id=df2140e6b6ff3c0bebc2a05782bf26ff
cv classification dla102x flowvision ke 完成 10 li https://www.oneflow.cloud/drill/#/project/public/code?id=c134390359f1d99647ffc6e814b4b59a
cv classification dla102x2 flowvision ke 完成 10 li https://www.oneflow.cloud/drill/#/project/public/code?id=a1a5a8c0d0038728372b98116df242db
cv classification dla169 flowvision ke 完成 10 li https://www.oneflow.cloud/drill/#/project/public/code?id=b02b358f69982312ce01028c25325a3a
cv classification genet_small flowvision ke 完成 3 li https://www.oneflow.cloud/drill/#/project/public/code?id=32e02310d717d8fa2c6841cf44b1b398
cv classification genet_normal flowvision ke 完成 3 li https://www.oneflow.cloud/drill/#/project/public/code?id=d0ff57b9dd41286da62eeff48365f393
cv classification genet_large flowvision ke 完成 3 li https://www.oneflow.cloud/drill/#/project/public/code?id=e395406e16ce22f84d5c6c75945da24c
cv classification hrnet_w18_small flowvision ke 完成 9 li https://www.oneflow.cloud/drill/#/project/public/code?id=1fd560ba809b25931f26285ee87fbd01
cv classification hrnet_w18_small_v2 flowvision ke 完成 9 li https://www.oneflow.cloud/drill/#/project/public/code?id=ed3a0a67216e00c5e16ca68297e2e51c
cv classification hrnet_w18 flowvision ke 完成 9 li https://www.oneflow.cloud/drill/#/project/public/code?id=477afc03da45d95475c585087263aa16
cv classification hrnet_w30 flowvision ke 完成 9 li https://www.oneflow.cloud/drill/#/project/public/code?id=b7830e267e11d1c24dc2e1f809815b58
cv classification hrnet_w32 flowvision ke 完成 9 li https://www.oneflow.cloud/drill/#/project/public/code?id=02b78b105d109ee2d73b141a84131d5d
cv classification hrnet_w40 flowvision ke 完成 9 li https://www.oneflow.cloud/drill/#/project/public/code?id=c4ebccc6d6c51c4726268327bf0d1277
cv classification hrnet_w44 flowvision ke 完成 9 li https://www.oneflow.cloud/drill/#/project/public/code?id=4ad93af70e75ad40b35b3a4037b42cd2
cv classification hrnet_w48 flowvision ke 完成 9 li https://www.oneflow.cloud/drill/#/project/public/code?id=5260c81e98fb3e315b211143e9fc3d1f
cv classification hrnet_w64 flowvision ke 完成 9 li https://www.oneflow.cloud/drill/#/project/public/code?id=f16740051ea0350f2c4a7cdbcf3f03c4
cv classification fan_vit_tiny flowvision zhang 完成 12 li https://www.oneflow.cloud/drill/#/project/public/code?id=5fdc757c88feab49cf3cd5321e191fcc
cv classification fan_vit_small flowvision zhang 完成 12 li https://www.oneflow.cloud/drill/#/project/public/code?id=f5e4fc22ddab8c1bacf86bc06b1b4f3a
cv classification fan_vit_large flowvision zhang 没有模型 12 li
cv classification fan_hybrid_tiny flowvision zhang 完成 12 li https://www.oneflow.cloud/drill/#/project/public/code?id=91286420dfed2958fcdaa44947f5fdd6
cv classification fan_hybrid_small flowvision zhang 完成 12 li https://www.oneflow.cloud/drill/#/project/public/code?id=0f6c5f287e19e86199d1c651353683bc
cv classification fan_hybrid_base flowvision zhang 完成 12 li https://www.oneflow.cloud/drill/#/project/public/code?id=dc39a54b6125b8a025d8ee9aa9a56d7e
cv classification fan_hybrid_large flowvision zhang 没有模型 12 li
cv classification fan_base_18_p16_224 flowvision li 完成 12 li https://www.oneflow.cloud/drill/#/project/public/code?id=f6af8debe2b2cac9ac6a78b6640131fd
cv classification fan_hybrid_base_in22k_1k flowvision zhang 完成 12 li https://www.oneflow.cloud/drill/#/project/public/code?id=4e48d6211354973f5a25d684e55e204b
cv classification fan_hybrid_base_in22k_1k_384 flowvision zhang 完成 12 li https://www.oneflow.cloud/drill/#/project/public/code?id=727170a01151d1b960dae29560aefd1b
cv classification fan_hybrid_large_in22k_1k flowvision zhang 完成 12 li https://www.oneflow.cloud/drill/#/project/public/code?id=8fa9548610a845ebde39fe4a9e36e680
cv classification fan_hybrid_large_in22k_1k_384 flowvision zhang 完成 12 li https://www.oneflow.cloud/drill/#/project/public/code?id=932d7f4b229527e61eeedc46d90f77c3
cv classification pvt_small flowvision ke 完成 4 li https://www.oneflow.cloud/drill/#/project/public/code?id=6f2d36e01ff216a91e884e106cc61b01
cv classification pvt_tiny flowvision zhang 完成 4 li https://www.oneflow.cloud/drill/#/project/public/code?id=68109071b32382961de42e6b2f6d38b1
cv classification pvt_medium flowvision zhang 完成 4 li https://www.oneflow.cloud/drill/#/project/public/code?id=f90ccd277fd99b91728907fbf4ad6052
cv classification pvt_large flowvision zhang 完成 4 li https://www.oneflow.cloud/drill/#/project/public/code?id=6b5533383abbf289ab905a6f902b3bbb
cv classification regionvit_base flowvision ke 完成 li https://www.oneflow.cloud/drill/#/project/public/code?id=8a772ef77e8265dad8e4ef6699b52c61
cv classification van_base flowvision ke 完成 li https://www.oneflow.cloud/drill/#/project/public/code?id=3e9a2df19f47b4325144885e3a37cbc1
cv classification AlexNet flowvision ke 完成 li https://www.oneflow.cloud/drill/#/project/public/code?id=72080813882acf841b8de45e88102f3c 
cv classification SqueezeNet flowvision ke 完成 li https://www.oneflow.cloud/drill/#/project/public/code?id=0a5e15b73b1c8289ef43439e3fdac6ba 
cv classification SqueezeNet 1.1 flowvision ke 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=46d7e0a2ef7f55aa9cf82b37a7c530c2
cv classification VGG-11 flowvision ke 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=61c0fe736758792228d4e0bfb27beb04
cv classification VGG-11-BN flowvision ke 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=381d00d5d6ce5ca40dcedd003d98b94a
cv classification VGG-13 flowvision ke 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=9bc8a6c17172722a7e04cf74f8b3b4de
cv classification VGG-13-BN flowvision ke 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=77e3480052ab9bacd2b37caeca5885e8
cv classification VGG-16 flowvision ke 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=6166d5d2af2b1bd29edadf88b62ef975
cv classification VGG-16-BN flowvision ke 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=89ac74c572ee6833d0a70d1650e1708a
cv classification VGG-19 flowvision ke 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=12256eee1b678bbe45f8610caba00f96
cv classification VGG-19-BN flowvision ke 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=e84034d9edd66977cd70130268dda4e0
cv classification GoogLeNet flowvision zhang 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=0f49a25e9fd85d21c2ae06e200452112
cv classification Inception_V3 flowvision zhang 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=3648dac8652969bdd49848071d0f968a
cv classification ResNet-18 flowvision ke 完成 li https://www.oneflow.cloud/drill/#/project/public/code?id=52e1e7d51e9f340ee18101edac59cc6d 
cv classification ResNet-34 flowvision ke 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=7ba5a5946ee5bdade3a6ed0d421a28d1
cv classification ResNet-50 flowvision ke 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=64669893332daab2ae874dfe839abd88
cv classification ResNet-101 flowvision ke 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=d069d9ce05d84290518f1a79c8db0f15
cv classification ResNet-152 flowvision ke 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=e60699fb4e75a3c9a6efe451c3c4dc4c
cv classification ResNeXt-50 32x4d flowvision ke 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=fa231a90a53651b92b9642b56c29dd19
cv classification ResNeXt-101 32x8d flowvision ke 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=0eb0c2b9f04381e99a8ed99b0ecf6e8a
cv classification ResNeSt-50 flowvision zhang 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=3669763ea9382906b0132dfb04c50c47
cv classification ResNeSt-101 flowvision zhang 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=b3b28a3065d162df62df6144b3cc8f6e
cv classification ResNeSt-200 flowvision zhang 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=41f5ecf0e37f60b17fa697b972ab5738
cv classification ResNeSt-269 flowvision zhang 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=9d3d1ab2792a86a9d3c02887a9a3b1d2
cv classification SE-ResNet101 flowvision zhang 完成 li https://www.oneflow.cloud/drill/#/project/public/code?id=6b50454e5ef09a31c40ada924c199cf9
cv classification SE-ResNet152 flowvision zhang 完成 li https://www.oneflow.cloud/drill/#/project/public/code?id=00ffee25af16d5951ec01e6fcaba5a29
cv classification SE-ResNet50 flowvision zhang 完成 li https://www.oneflow.cloud/drill/#/project/public/code?id=87aec92114ebc62e5b29575454a29f3f
cv classification SE-ResNeXt101-32x4d flowvision zhang 完成 li https://www.oneflow.cloud/drill/#/project/public/code?id=763356489039b10c91a635f3f59e4029
cv classification SE-ResNeXt50-32x4d flowvision zhang 完成 li https://www.oneflow.cloud/drill/#/project/public/code?id=21fefb3568303b5d0328e64b76bf1bfc
cv classification SENet-154 flowvision zhang 完成 li https://www.oneflow.cloud/drill/#/project/public/code?id=eb114bd5bc28f464ee624db70abb1a30
cv classification DenseNet-121 flowvision cui 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=9383d1ee8cf6b0beb1d82e001327e7e6
cv classification DenseNet-161 flowvision cui 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=748e5cf1d4d07c3439e61102f41503d1
cv classification DenseNet-169 flowvision cui 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=2c31515668a6c3d01ac9dbe5d35f4051
cv classification DenseNet-201 flowvision cui 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=0ed8889b7be3e26a4e0b821cc584380d
cv classification ShuffleNet_V2 x0.5 flowvision cui 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=75a9ebdce52dbaea88ea921df32a36f2
cv classification ShuffleNet_V2 x1.0 flowvision cui 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=90d9a3ddcb8bafabc951742ebc4defd5
cv classification ShuffleNet_V2 x1.5 flowvision cui 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=569fe5043eda185002ab35a08d9707d7
cv classification ShuffleNet_V2 x2.0 flowvision cui 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=50d954efb04235e6b9f993cbb9492457
cv classification MobileNet_V2 flowvision cui 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=8fac67899e5bdcc0981da13c3cab1b89
cv classification MobileNet_V3 small flowvision cui 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=e5fd35642b7ac9b537110ceb70c9832a
cv classification MobileNet_V3 large flowvision cui 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=6529be091cb9c1af73fbe43f85092dee
cv classification MNASNet x0.5 flowvision cui 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=9c2419d250dc5b2d61c47fdbcbc45b23
cv classification MNASNet x0.75 flowvision cui 完成    li https://www.oneflow.cloud/drill/#/project/public/code?id=dea56da93c65719360b637a842096c7e 
cv classification MNASNet x1.0 flowvision cui 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=92dd8f01260cf7a01db8bc57f0d44cf9
cv classification MNASNet x1.3 flowvision cui 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=f09034e44f7fa3653a108a486defe1a9
cv classification GhostNet flowvision ke 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=8b02840745f682ae928da9bc618e6bb0
cv classification CrossFormer-T flowvision zhang 完成 li https://www.oneflow.cloud/drill/#/project/public/code?id=ec876cce29a7d9da57f3f01bcac57bb8
cv classification CrossFormer-S flowvision zhang 完成 li  https://www.oneflow.cloud/drill/#/project/public/code?id=31ab1b82aa32df9fd9eca0d99226c6a2
cv classification CrossFormer-B flowvision zhang 完成 li  https://www.oneflow.cloud/drill/#/project/public/code?id=ee4ecc63d59f0e26e178185adf5b70e4
cv classification CrossFormer-L flowvision zhang 完成 li  https://www.oneflow.cloud/drill/#/project/public/code?id=bc3f08aa3513464d10aab15a75a67fa5
cv classification PoolFormer-S12 flowvision zhou 完成  li https://www.oneflow.cloud/drill/#/project/public/code?id=3802898d0df4ab05479425c56cbdc5d8
cv classification PoolFormer-S24 flowvision zhang 完成  li  https://www.oneflow.cloud/drill/#/project/public/code?id=08b8873535d3179796697808cd470bba
cv classification PoolFormer-S36 flowvision zhang 完成  li https://www.oneflow.cloud/drill/#/project/public/code?id=e76ce4d08ffc55277ec18b584acf0d07 
cv classification PoolFormer-M36 flowvision zhang 完成  li  https://www.oneflow.cloud/drill/#/project/public/code?id=03654a36457379ae02da2cda230cf8ef
cv classification PoolFormer-M48 flowvision zhang 完成  li  https://www.oneflow.cloud/drill/#/project/public/code?id=52fe605fc822974a72a359c5ca68a8e2
cv classification gMLP flowvision ke 完成 li https://www.oneflow.cloud/drill/#/project/public/code?id=db86fa73ae42ec1138bbf9c282d715a7
cv classification ConvNeXt flowvision ke 完成 可拓展至:18 li https://www.oneflow.cloud/drill/#/project/public/code?id=580631c6005d96e2fc756b697264911c
cv classification LeViT flowvision ke 完成(infer低) 可拓展至:5 li https://www.oneflow.cloud/drill/#/project/public/code?id=e53b9e1e52602aa6887e8289aed2ae42
cv classification MobileViT flowvision li 进行中(infer低)
cv Semantic Segmentation fcn_resnet101_coco flowvision zhou 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=5a67c4d8f94d50904b00e1ab7dc073b0
cv Semantic Segmentation fcn_resnet50_coco flowvision zhou 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=5b958d4676e6a873a85f50f7327d5810
cv Semantic Segmentation deeplabv3_mobilenet_v3_large_coco flowvision zhou 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=7fcd75aeda576e41fcc8841a5d38c44d
cv Semantic Segmentation deeplabv3_resnet101_coco flowvision zhou 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=98a1dbe2c439f5fae5c24ba7c6109c47
cv Semantic Segmentation deeplabv3_resnet50_coco flowvision zhou 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=56ee96d906df67c2af2390d36dffb694
cv Semantic Segmentation lraspp_mobilenet_v3_large_coco flowvision zhou 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=0836620e36d9c728547fde5c08d2939d
cv Object Detection fasterrcnn_mobilenet_v3_large_320_fpn flowvision zhou 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=83955d0dbd8f6e398384297300031d40
cv Object Detection fasterrcnn_mobilenet_v3_large_fpn flowvision zhou 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=123c9a849cc8180206e8cfe42e32c7e3
cv Object Detection fasterrcnn_resnet50_fpn flowvision zhou 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=3e9d4f6d8d81dd3626ff3a2491a4ece3
cv Object Detection maskrcnn_resnet50_fpn flowvision zhou 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=bd90c25e18860ac4c4f669e0a7a2dadc
cv Object Detection retinanet_resnet50_fpn flowvision zhou 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=965abe47aeac05155363492ec6b6d6c7
cv Object Detection ssd300_vgg16 flowvision zhou 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=c677f6ab3885b5be9fd482575ee25a21
cv Object Detection ssdlite320_mobilenet_v3_large flowvision zhou 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=aacf292f065ecfbeee4b3df54bde6e55
cv Object Detection fcos_resnet50_fpn flowvision zhou 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=dd9230b9351651ffce3df71878fcb470
cv Neural Style Transfer style_transfer.fast_neural_style flowvision zhou 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=0006f425af1fee25d4dc14385a38a4e6
cv Face Recognition iresnet50 flowvision zhou 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=a61c970743904dc4773e40b0abecd064
cv Face Recognition iresnet101 flowvision zhou 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=b4804fb168d41aa3a94f83abd0019a7d
cv   VisionTransformer libai li 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=dc07b87d3a60e36d182f908e8bb660f9
nlp   SwinTransformer libai li 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=62f0d66aa7441b9f10f877176af27e7d
nlp   SwinTransformerV2 libai li 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=47260dd33f92bedfc1f024095dcbc035
nlp   ResMLP libai li 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=f76e38f8228c97ecadfe0482ed2fc06c
nlp   BERT libai li 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=c972180739924ca78d89f664b7ad135f
nlp   RoBERTa libai li 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=d3bbb391e714b1f780aac86e3aa074a9
nlp   T5 libai li 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=6152fadc8e6997f972ce1a85841daf78
nlp   GPT-2 libai li 完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=161fb0c7e6c609526b97bd30d935e1b8
nlp text_classfication Transformer CoModels maolin  完成   li https://www.oneflow.cloud/drill/#/project/public/code?id=1ad00d3d7db8c504b08345461b3999b0
nlp odd_numbers Transformer CoModels maolin 完成    li https://www.oneflow.cloud/drill/#/project/public/code?id=c6bd57e6b4f6362348783da981f6f0ff
science Equation inversion-Lorenz system PINNs CoModels zhang 完成    li https://www.oneflow.cloud/drill/#/project/public/code?id=91f8fb23498318f83dd16e0e875db6bc
science Fluid simulation-ldc PINNs CoModels zhang  完成    li https://www.oneflow.cloud/drill/#/project/public/code?id=b1914ead9370947a60b3a9c3ee60b0c0
@levi131 levi131 self-assigned this Nov 7, 2023
@akeeei
Copy link
Contributor

akeeei commented Nov 13, 2023

vit_tiny_patch16_224


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: ba432de
Training
cd CoModels/cv/classification/vit_tiny_patch16_224
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 32
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 300
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 0.003
  WARMUP_LR: 5e-7
  
  LR_SCHEDULER:
    NAME: cosine

  OPTIMIZER:
    NAME: adamw
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/vit_tiny_patch16_224
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 53.941 Acc@5 78.964
INFO Accuracy of the network on the 98 test images: 53.9%
INFO Max accuracy: 64.19%
INFO Training time  6:49:33
推理结果
INFO * Acc@1 45.267 Acc@5 68.073
INFO Accuracy of the network on the 1563 test images: 45.3%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 1757.057121686971

@akeeei
Copy link
Contributor

akeeei commented Nov 13, 2023

vit_tiny_patch16_384


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 1c8febd
Training
cd CoModels/cv/classification/vit_tiny_patch16_384
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 32
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 384

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 300
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7
  
  LR_SCHEDULER:
    NAME: cosine

  OPTIMIZER:
    NAME: adamw
    MOMENTUM: 0.9
Inference
cd CoModels/cv/classification/vit_tiny_patch16_384
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 68.616 Acc@5 89.426
INFO Accuracy of the network on the 98 test images: 68.6%
INFO Max accuracy: 68.62%
INFO Training time 1:40:07
推理结果
INFO  * Acc@1 48.120 Acc@5 70.708
INFO Accuracy of the network on the 1563 test images: 48.1%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 328.12604634424923

@akeeei
Copy link
Contributor

akeeei commented Nov 13, 2023

vit_small_patch32_224


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 8990745
Training
cd CoModels/cv/classification/vit_small_patch32_224
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 256
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 300
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7
  
  LR_SCHEDULER:
    NAME: cosine

  OPTIMIZER:
    NAME: adamw
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/vit_small_patch32_224
bash  infer.sh
训练过程
  • 训练日志 :

image
image

  • 训练结果 :
INFO  * Acc@1 66.895 Acc@5 87.109
INFO Accuracy of the network on the 49 test images: 66.9%
INFO Max accuracy: 67.58%
INFO Training time 0:57:20
推理结果
INFO  * Acc@1 62.294 Acc@5 84.081
INFO Accuracy of the network on the 1563 test images: 62.3%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 2159.266911487113

@akeeei
Copy link
Contributor

akeeei commented Nov 13, 2023

vit_small_patch32_384


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 43e20ad
Training
cd CoModels/cv/classification/vit_small_patch32_384
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 128
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 384

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 300
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7
  
  LR_SCHEDULER:
    NAME: cosine

  OPTIMIZER:
    NAME: adamw
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/vit_small_patch32_384
bash  infer.sh
训练过程
  • 训练日志 :
    image
    image

  • 训练结果 :

INFO  * Acc@1 73.145 Acc@5 93.945
INFO Accuracy of the network on the 49 test images: 73.1%
INFO Max accuracy: 74.12%
INFO Training time 2:22:48
推理结果
INFO  * Acc@1 68.424 Acc@5 88.513
INFO Accuracy of the network on the 1563 test images: 68.4%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 965.2715564422288

@akeeei
Copy link
Contributor

akeeei commented Nov 13, 2023

vit_small_patch16_384


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 7dff945
Training
cd CoModels/cv/classification/vit_small_patch16_384
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 32
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 300
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 0.003
  WARMUP_LR: 5e-7
  
  LR_SCHEDULER:
    NAME: cosine

  OPTIMIZER:
    NAME: adamw
    MOMENTUM: 0.9
Inference
cd CoModels/cv/classification/vit_small_patch16_384
bash  infer.sh
训练过程
  • 训练日志 :

image
image

  • 训练结果 :
INFO  * Acc@1 76.015 Acc@5 93.935
INFO Accuracy of the network on the 391 test images: 76.0%
INFO Max accuracy: 76.01%
INFO Training time 1:22:44
推理结果
INFO  * Acc@1 76.932 Acc@5 93.956
INFO Accuracy of the network on the 1563 test images: 76.9%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 425.0662919764819

@akeeei
Copy link
Contributor

akeeei commented Nov 13, 2023

vit_base_patch32_224


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: a236ead
Training
cd CoModels/cv/classification/vit_base_patch32_224
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 256
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 300
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7
  
  LR_SCHEDULER:
    NAME: cosine

  OPTIMIZER:
    NAME: adamw
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/vit_base_patch32_224
bash  infer.sh
训练过程
  • 训练日志 :

image
image

  • 训练结果 :
INFO  * Acc@1 77.516 Acc@5 93.892
INFO Accuracy of the network on the 98 test images: 77.5%
INFO Max accuracy: 77.52%
INFO Training time 0:41:03
推理结果
INFO * Acc@1 72.105 Acc@5 90.895
INFO Accuracy of the network on the 1563 test images: 72.1%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 880.851543616409

@akeeei
Copy link
Contributor

akeeei commented Nov 13, 2023

vit_base_patch32_384


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 53fad98
Training
cd CoModels/cv/classification/vit_base_patch32_384
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 128
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 384

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 300
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7
  
  LR_SCHEDULER:
    NAME: cosine

  OPTIMIZER:
    NAME: adamw
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/vit_base_patch32_384
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 74.982 Acc@5 93.119
INFO Accuracy of the network on the 196 test images: 75.0%
INFO Max accuracy: 74.98%
INFO Training time 1:21:08
推理结果
INFO  * Acc@1 76.455 Acc@5 93.238
INFO Accuracy of the network on the 1563 test images: 76.5%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 341.92431427372634

@akeeei
Copy link
Contributor

akeeei commented Nov 13, 2023

vit_base_patch16_384


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 9fe0c58
Training
cd CoModels/cv/classification/vit_base_patch16_384
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 32
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 384

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 300
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7
  
  LR_SCHEDULER:
    NAME: cosine

  OPTIMIZER:
    NAME: adamw
    MOMENTUM: 0.9


Inference
cd CoModels/cv/classification/vit_base_patch16_384
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 73.707 Acc@5 92.468
INFO Accuracy of the network on the 391 test images: 73.7%
INFO Max accuracy: 73.71%
INFO Training time 2:21:20
推理结果
INFO  * Acc@1 78.719 Acc@5 94.443
INFO Accuracy of the network on the 1563 test images: 78.7%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 60.235781614383676

@akeeei
Copy link
Contributor

akeeei commented Nov 13, 2023

vit_base_patch8_224


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 1bbc96c
Training
cd CoModels/cv/classification/vit_base_patch8_224
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 16
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 300
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 3e-5
  WARMUP_LR: 5e-7
  
  LR_SCHEDULER:
    NAME: cosine

  OPTIMIZER:
    NAME: adamw
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/vit_base_patch8_224
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 80.505 Acc@5 95.880
INFO Accuracy of the network on the 782 test images: 80.5%
INFO Max accuracy: 80.51%
INFO Training time 4:41:53
推理结果
INFO  * Acc@1 76.249 Acc@5 92.587
INFO Accuracy of the network on the 1563 test images: 76.2%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 35.069299488421656

@kokuro-asahi
Copy link
Contributor Author

kokuro-asahi commented Nov 13, 2023

EfficientNet_b0


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: dea3f43
  • flowvision: 0.2.1
  • CoModels commit: 5ec3acc
Training
cd CoModels/cv/classification/efficientnet_b0
bash train.sh
训练所用超参数
AMP_OPT_LEVEL: ''
AUG:
  AUTO_AUGMENT: rand-m9-mstd0.5-inc1
  COLOR_JITTER: 0.4
  CUTMIX: 0.0
  CUTMIX_MINMAX: null
  MIXUP: 0.0
  MIXUP_MODE: batch
  MIXUP_PROB: 1.0
  MIXUP_SWITCH_PROB: 0.5
  RECOUNT: 1
  REMODE: pixel
  REPROB: 0.25
BASE:
- ''
DATA:
  BATCH_SIZE: 32
  CACHE_MODE: part
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224
  INTERPOLATION: bicubic
  NUM_CLASSES: 1000
  NUM_WORKERS: 4
  PIN_MEMORY: true
  SYNTHETIC_DATA: false
  ZIP_MODE: false
EVAL_MODE: true
LOCAL_RANK: 0
MODEL:
  ARCH: efficientnet_b0
  CHECKPOINTS: null
  DROP_PATH_RATE: 0.1
  DROP_RATE: 0.0
  LABEL_SMOOTHING: 0.1
  NUM_CLASSES: 1000
  PRETRAINED: true
  RESUME: ''
OUTPUT: output/efficientnet_b0/default
PRINT_FREQ: 50
SAVE_FREQ: 1
SEED: 42
TAG: default
TEST:
  CROP: true
  SEQUENTIAL: false
THROUGHPUT_MODE: false
TRAIN:
  ACCUMULATION_STEPS: 0
  AUTO_RESUME: false
  BASE_LR: 0.1
  CLIP_GRAD: 5.0
  EPOCHS: 90
  LR_SCHEDULER:
    DECAY_EPOCHS: 30
    DECAY_RATE: 0.1
    MILESTONES:
    - 150
    - 225
    NAME: step
  MIN_LR: 1.25e-06
  OPTIMIZER:
    BETAS:
    - 0.9
    - 0.999
    EPS: 1.0e-08
    MOMENTUM: 0.9
    NAME: sgd
  START_EPOCH: 0
  USE_CHECKPOINT: false
  WARMUP_EPOCHS: 0
  WARMUP_LR: 5.0e-07
  WEIGHT_DECAY: 0.0001

Inference
cd CoModels/cv/classification/efficientnet_b0
bash  infer.sh
训练过程
  • 训练日志 :

image

推理结果 INFO * Acc@1 77.704 Acc@5 93.547

@kokuro-asahi
Copy link
Contributor Author

kokuro-asahi commented Nov 13, 2023

EfficientNet_b1


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: dea3f43
  • flowvision: 0.2.1
  • CoModels commit: d34926e
Training
cd CoModels/cv/classification/efficientnet_b1
bash train.sh
训练所用超参数
AMP_OPT_LEVEL: ''
AUG:
  AUTO_AUGMENT: rand-m9-mstd0.5-inc1
  COLOR_JITTER: 0.4
  CUTMIX: 0.0
  CUTMIX_MINMAX: null
  MIXUP: 0.0
  MIXUP_MODE: batch
  MIXUP_PROB: 1.0
  MIXUP_SWITCH_PROB: 0.5
  RECOUNT: 1
  REMODE: pixel
  REPROB: 0.25
BASE:
- ''
DATA:
  BATCH_SIZE: 32
  CACHE_MODE: part
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224
  INTERPOLATION: bicubic
  NUM_CLASSES: 1000
  NUM_WORKERS: 4
  PIN_MEMORY: true
  SYNTHETIC_DATA: false
  ZIP_MODE: false
EVAL_MODE: true
LOCAL_RANK: 0
MODEL:
  ARCH: efficientnet_b0
  CHECKPOINTS: null
  DROP_PATH_RATE: 0.1
  DROP_RATE: 0.0
  LABEL_SMOOTHING: 0.1
  NUM_CLASSES: 1000
  PRETRAINED: true
  RESUME: ''
OUTPUT: output/efficientnet_b1/default
PRINT_FREQ: 50
SAVE_FREQ: 1
SEED: 42
TAG: default
TEST:
  CROP: true
  SEQUENTIAL: false
THROUGHPUT_MODE: false
TRAIN:
  ACCUMULATION_STEPS: 0
  AUTO_RESUME: false
  BASE_LR: 0.1
  CLIP_GRAD: 5.0
  EPOCHS: 90
  LR_SCHEDULER:
    DECAY_EPOCHS: 30
    DECAY_RATE: 0.1
    MILESTONES:
    - 150
    - 225
    NAME: step
  MIN_LR: 1.25e-06
  OPTIMIZER:
    BETAS:
    - 0.9
    - 0.999
    EPS: 1.0e-08
    MOMENTUM: 0.9
    NAME: sgd
  START_EPOCH: 0
  USE_CHECKPOINT: false
  WARMUP_EPOCHS: 0
  WARMUP_LR: 5.0e-07
  WEIGHT_DECAY: 0.0001

Inference
cd CoModels/cv/classification/efficientnet_b1
bash  infer.sh
训练过程
  • 训练日志 :

image

推理结果 INFO * Acc@1 77.589 Acc@5 93.641 NFO Accuracy of the network on the 1563 test images: 77.6%

@kokuro-asahi
Copy link
Contributor Author

kokuro-asahi commented Nov 14, 2023

EfficientNet_b2


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: dea3f43
  • flowvision: 0.2.1
  • CoModels commit: 8557d47
Training
cd CoModels/cv/classification/efficientnet_b2
bash train.sh
训练所用超参数
AMP_OPT_LEVEL: ''
AUG:
  AUTO_AUGMENT: rand-m9-mstd0.5-inc1
  COLOR_JITTER: 0.4
  CUTMIX: 0.0
  CUTMIX_MINMAX: null
  MIXUP: 0.0
  MIXUP_MODE: batch
  MIXUP_PROB: 1.0
  MIXUP_SWITCH_PROB: 0.5
  RECOUNT: 1
  REMODE: pixel
  REPROB: 0.25
BASE:
- ''
DATA:
  BATCH_SIZE: 32
  CACHE_MODE: part
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224
  INTERPOLATION: bicubic
  NUM_CLASSES: 1000
  NUM_WORKERS: 4
  PIN_MEMORY: true
  SYNTHETIC_DATA: false
  ZIP_MODE: false
EVAL_MODE: true
LOCAL_RANK: 0
MODEL:
  ARCH: efficientnet_b2
  CHECKPOINTS: null
  DROP_PATH_RATE: 0.1
  DROP_RATE: 0.0
  LABEL_SMOOTHING: 0.1
  NUM_CLASSES: 1000
  PRETRAINED: true
  RESUME: ''
OUTPUT: output/efficientnet_b2/default
PRINT_FREQ: 50
SAVE_FREQ: 1
SEED: 42
TAG: default
TEST:
  CROP: true
  SEQUENTIAL: false
THROUGHPUT_MODE: false
TRAIN:
  ACCUMULATION_STEPS: 0
  AUTO_RESUME: false
  BASE_LR: 0.1
  CLIP_GRAD: 5.0
  EPOCHS: 90
  LR_SCHEDULER:
    DECAY_EPOCHS: 30
    DECAY_RATE: 0.1
    MILESTONES:
    - 150
    - 225
    NAME: step
  MIN_LR: 1.25e-06
  OPTIMIZER:
    BETAS:
    - 0.9
    - 0.999
    EPS: 1.0e-08
    MOMENTUM: 0.9
    NAME: sgd
  START_EPOCH: 0
  USE_CHECKPOINT: false
  WARMUP_EPOCHS: 0
  WARMUP_LR: 5.0e-07
  WEIGHT_DECAY: 0.0001

Inference
cd CoModels/cv/classification/efficientnet_b2
bash  infer.sh
训练过程
  • 训练日志 :

image

推理结果 INFO * Acc@1 57.904 Acc@5 78.367

@akeeei
Copy link
Contributor

akeeei commented Nov 15, 2023

vit_small_patch16_224


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 062487c
Training
cd CoModels/cv/classification/vit_small_patch16_224
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 256
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 300
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 3e-4
  WARMUP_LR: 5e-7
  
  LR_SCHEDULER:
    NAME: cosine

  OPTIMIZER:
    NAME: adamw
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/vit_small_patch16_224
bash  infer.sh
训练过程
  • 训练日志 :

281599663-a6910294-5e73-467b-9b9b-b1485b62c45e

  • 训练结果 :
INFO  * Acc@1 71.530 Acc@5 91.356
INFO Accuracy of the network on the 98 test images: 71.5%
INFO Max accuracy: 71.53%
INFO Training time 0:33:14
推理结果
INFO  * Acc@1 74.206 Acc@5 92.386
INFO Accuracy of the network on the 1563 test images: 74.2%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 725.5174421915012

@akeeei
Copy link
Contributor

akeeei commented Nov 15, 2023

vit_large_patch32_384


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 01fe293
Training
cd CoModels/cv/classification/vit_large_patch32_384
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 64
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 384

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 300
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 3e-5
  WARMUP_LR: 5e-7
  
  LR_SCHEDULER:
    NAME: cosine

  OPTIMIZER:
    NAME: adamw
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/vit_large_patch32_384
bash  infer.sh
训练过程
  • 训练日志 :

图片
图片

  • 训练结果 :
INFO  * Acc@1 79.412 Acc@5 95.099
INFO Accuracy of the network on the 391 test images: 79.4%
INFO Max accuracy: 79.41%
INFO Training time 2:27:31
推理结果
INFO  * Acc@1 75.623 Acc@5 93.137
INFO Accuracy of the network on the 1563 test images: 75.6%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 245.38814350421615

@akeeei
Copy link
Contributor

akeeei commented Nov 15, 2023

vit_large_patch16_224


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 2e46862
Training
cd CoModels/cv/classification/vit_large_patch16_224
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 32
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 300
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-5
  WARMUP_LR: 5e-7
  
  LR_SCHEDULER:
    NAME: cosine

  OPTIMIZER:
    NAME: adamw
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/vit_large_patch16_224
bash  infer.sh
训练过程
  • 训练日志 :

图片

  • 训练结果 :
INFO  * Acc@1 84.833 Acc@5 97.480
INFO Accuracy of the network on the 782 test images: 84.8%
INFO Max accuracy: 84.83%
INFO Training time 3:28:39
推理结果
INFO  * Acc@1 83.462 Acc@5 96.732
INFO Accuracy of the network on the 1563 test images: 83.5%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 184.42577691807244

@akeeei
Copy link
Contributor

akeeei commented Nov 15, 2023

vit_base_patch16_224_sam


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: a36a7a3
Training
cd CoModels/cv/classification/vit_base_patch16_224_sam
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 128
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 300
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7
  
  LR_SCHEDULER:
    NAME: cosine

  OPTIMIZER:
    NAME: adamw
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/vit_base_patch16_224_sam
bash  infer.sh
训练过程
  • 训练日志 :

图片

  • 训练结果 :
INFO  * Acc@1 78.311 Acc@5 93.732
INFO Accuracy of the network on the 196 test images: 78.3%
INFO Max accuracy: 78.31%
INFO Training time 0:57:02
推理结果
INFO  * Acc@1 75.530 Acc@5 92.172
INFO Accuracy of the network on the 1563 test images: 75.5%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 267.0716634529662

@akeeei
Copy link
Contributor

akeeei commented Nov 15, 2023

vit_base_patch32_224_sam


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 72f3e9f
Training
cd CoModels/cv/classification/vit_base_patch32_224_sam
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 128
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 300
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7
  
  LR_SCHEDULER:
    NAME: cosine

  OPTIMIZER:
    NAME: adamw
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/vit_base_patch32_224_sam
bash  infer.sh
训练过程
  • 训练日志 :

图片

  • 训练结果 :
INFO  * Acc@1 70.874 Acc@5 89.295
INFO Accuracy of the network on the 196 test images: 70.9%
INFO Max accuracy: 70.87%
INFO Training time 2:21:20
推理结果
INFO  * Acc@1 63.574 Acc@5 83.926
INFO Accuracy of the network on the 1563 test images: 63.6%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 1071.7754732650496

@akeeei
Copy link
Contributor

akeeei commented Nov 15, 2023

vit_large_patch16_384


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 7db4688
Training
cd CoModels/cv/classification/vit_large_patch16_384
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 8
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 384

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 300
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-5
  WARMUP_LR: 5e-7
  
  LR_SCHEDULER:
    NAME: cosine

  OPTIMIZER:
    NAME: adamw
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/vit_large_patch16_384
bash  infer.sh
训练过程
  • 训练日志 :

图片

  • 训练结果 :
INFO  * Acc@1 85.411 Acc@5 97.703
INFO Accuracy of the network on the 1563 test images: 85.4%
INFO Max accuracy: 85.41%
INFO Training time 6:10:56
推理结果
INFO  * Acc@1 85.094 Acc@5 97.570
INFO Accuracy of the network on the 1563 test images: 85.1%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 54.038784254131365

@kokuro-asahi
Copy link
Contributor Author

kokuro-asahi commented Nov 15, 2023

EfficientNet_b3


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: dea3f43
  • flowvision: 0.2.1
  • CoModels commit: 52d1660
Training
cd CoModels/cv/classification/efficientnet_b3
bash train.sh
训练所用超参数
AMP_OPT_LEVEL: ''
AUG:
  AUTO_AUGMENT: rand-m9-mstd0.5-inc1
  COLOR_JITTER: 0.4
  CUTMIX: 0.0
  CUTMIX_MINMAX: null
  MIXUP: 0.0
  MIXUP_MODE: batch
  MIXUP_PROB: 1.0
  MIXUP_SWITCH_PROB: 0.5
  RECOUNT: 1
  REMODE: pixel
  REPROB: 0.25
BASE:
- ''
DATA:
  BATCH_SIZE: 32
  CACHE_MODE: part
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224
  INTERPOLATION: bicubic
  NUM_CLASSES: 1000
  NUM_WORKERS: 4
  PIN_MEMORY: true
  SYNTHETIC_DATA: false
  ZIP_MODE: false
EVAL_MODE: true
LOCAL_RANK: 0
MODEL:
  ARCH: efficientnet_b3
  CHECKPOINTS: null
  DROP_PATH_RATE: 0.1
  DROP_RATE: 0.0
  LABEL_SMOOTHING: 0.1
  NUM_CLASSES: 1000
  PRETRAINED: true
  RESUME: ''
OUTPUT: output/efficientnet_b3/default
PRINT_FREQ: 50
SAVE_FREQ: 1
SEED: 42
TAG: default
TEST:
  CROP: true
  SEQUENTIAL: false
THROUGHPUT_MODE: false
TRAIN:
  ACCUMULATION_STEPS: 0
  AUTO_RESUME: false
  BASE_LR: 0.1
  CLIP_GRAD: 5.0
  EPOCHS: 90
  LR_SCHEDULER:
    DECAY_EPOCHS: 30
    DECAY_RATE: 0.1
    MILESTONES:
    - 150
    - 225
    NAME: step
  MIN_LR: 1.25e-06
  OPTIMIZER:
    BETAS:
    - 0.9
    - 0.999
    EPS: 1.0e-08
    MOMENTUM: 0.9
    NAME: sgd
  START_EPOCH: 0
  USE_CHECKPOINT: false
  WARMUP_EPOCHS: 0
  WARMUP_LR: 5.0e-07
  WEIGHT_DECAY: 0.0001

Inference
cd CoModels/cv/classification/efficientnet_b3
bash  infer.sh
训练过程
  • 训练日志 :

image

推理结果 INFO * Acc@1 64.891 Acc@5 74.763

@kokuro-asahi
Copy link
Contributor Author

kokuro-asahi commented Nov 15, 2023

EfficientNet_b4


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: dea3f43
  • flowvision: 0.2.1
  • CoModels commit: 9209774
Training
cd CoModels/cv/classification/efficientnet_b4
bash train.sh
训练所用超参数
AMP_OPT_LEVEL: ''
AUG:
  AUTO_AUGMENT: rand-m9-mstd0.5-inc1
  COLOR_JITTER: 0.4
  CUTMIX: 0.0
  CUTMIX_MINMAX: null
  MIXUP: 0.0
  MIXUP_MODE: batch
  MIXUP_PROB: 1.0
  MIXUP_SWITCH_PROB: 0.5
  RECOUNT: 1
  REMODE: pixel
  REPROB: 0.25
BASE:
- ''
DATA:
  BATCH_SIZE: 32
  CACHE_MODE: part
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224
  INTERPOLATION: bicubic
  NUM_CLASSES: 1000
  NUM_WORKERS: 4
  PIN_MEMORY: true
  SYNTHETIC_DATA: false
  ZIP_MODE: false
EVAL_MODE: true
LOCAL_RANK: 0
MODEL:
  ARCH: efficientnet_b4
  CHECKPOINTS: null
  DROP_PATH_RATE: 0.1
  DROP_RATE: 0.0
  LABEL_SMOOTHING: 0.1
  NUM_CLASSES: 1000
  PRETRAINED: true
  RESUME: ''
OUTPUT: output/efficientnet_b4/default
PRINT_FREQ: 50
SAVE_FREQ: 1
SEED: 42
TAG: default
TEST:
  CROP: true
  SEQUENTIAL: false
THROUGHPUT_MODE: false
TRAIN:
  ACCUMULATION_STEPS: 0
  AUTO_RESUME: false
  BASE_LR: 0.1
  CLIP_GRAD: 5.0
  EPOCHS: 90
  LR_SCHEDULER:
    DECAY_EPOCHS: 30
    DECAY_RATE: 0.1
    MILESTONES:
    - 150
    - 225
    NAME: step
  MIN_LR: 1.25e-06
  OPTIMIZER:
    BETAS:
    - 0.9
    - 0.999
    EPS: 1.0e-08
    MOMENTUM: 0.9
    NAME: sgd
  START_EPOCH: 0
  USE_CHECKPOINT: false
  WARMUP_EPOCHS: 0
  WARMUP_LR: 5.0e-07
  WEIGHT_DECAY: 0.0001

Inference
cd CoModels/cv/classification/efficientnet_b4
bash  infer.sh
训练过程
  • 训练日志 :

image

推理结果 INFO * Acc@1 57.009 Acc@5 62.790

@kokuro-asahi
Copy link
Contributor Author

kokuro-asahi commented Nov 15, 2023

EfficientNet_b5


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: dea3f43
  • flowvision: 0.2.1
  • CoModels commit: 57640c8
Training
cd CoModels/cv/classification/efficientnet_b5
bash train.sh
训练所用超参数
AMP_OPT_LEVEL: ''
AUG:
  AUTO_AUGMENT: rand-m9-mstd0.5-inc1
  COLOR_JITTER: 0.4
  CUTMIX: 0.0
  CUTMIX_MINMAX: null
  MIXUP: 0.0
  MIXUP_MODE: batch
  MIXUP_PROB: 1.0
  MIXUP_SWITCH_PROB: 0.5
  RECOUNT: 1
  REMODE: pixel
  REPROB: 0.25
BASE:
- ''
DATA:
  BATCH_SIZE: 32
  CACHE_MODE: part
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224
  INTERPOLATION: bicubic
  NUM_CLASSES: 1000
  NUM_WORKERS: 4
  PIN_MEMORY: true
  SYNTHETIC_DATA: false
  ZIP_MODE: false
EVAL_MODE: true
LOCAL_RANK: 0
MODEL:
  ARCH: efficientnet_b4
  CHECKPOINTS: null
  DROP_PATH_RATE: 0.1
  DROP_RATE: 0.0
  LABEL_SMOOTHING: 0.1
  NUM_CLASSES: 1000
  PRETRAINED: true
  RESUME: ''
OUTPUT: output/efficientnet_b4/default
PRINT_FREQ: 50
SAVE_FREQ: 1
SEED: 42
TAG: default
TEST:
  CROP: true
  SEQUENTIAL: false
THROUGHPUT_MODE: false
TRAIN:
  ACCUMULATION_STEPS: 0
  AUTO_RESUME: false
  BASE_LR: 0.1
  CLIP_GRAD: 5.0
  EPOCHS: 90
  LR_SCHEDULER:
    DECAY_EPOCHS: 30
    DECAY_RATE: 0.1
    MILESTONES:
    - 150
    - 225
    NAME: step
  MIN_LR: 1.25e-06
  OPTIMIZER:
    BETAS:
    - 0.9
    - 0.999
    EPS: 1.0e-08
    MOMENTUM: 0.9
    NAME: sgd
  START_EPOCH: 0
  USE_CHECKPOINT: false
  WARMUP_EPOCHS: 0
  WARMUP_LR: 5.0e-07
  WEIGHT_DECAY: 0.0001

Inference
cd CoModels/cv/classification/efficientnet_b4
bash  infer.sh
训练过程
  • 训练日志 :

image

推理结果 INFO * Acc@1 57.009 Acc@5 62.790

@kokuro-asahi
Copy link
Contributor Author

kokuro-asahi commented Nov 15, 2023

EfficientNet_b6


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: dea3f43
  • flowvision: 0.2.1
  • CoModels commit: e7d7b19
Training
cd CoModels/cv/classification/efficientnet_b6
bash train.sh
训练所用超参数
AMP_OPT_LEVEL: ''
AUG:
  AUTO_AUGMENT: rand-m9-mstd0.5-inc1
  COLOR_JITTER: 0.4
  CUTMIX: 0.0
  CUTMIX_MINMAX: null
  MIXUP: 0.0
  MIXUP_MODE: batch
  MIXUP_PROB: 1.0
  MIXUP_SWITCH_PROB: 0.5
  RECOUNT: 1
  REMODE: pixel
  REPROB: 0.25
BASE:
- ''
DATA:
  BATCH_SIZE: 32
  CACHE_MODE: part
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224
  INTERPOLATION: bicubic
  NUM_CLASSES: 1000
  NUM_WORKERS: 4
  PIN_MEMORY: true
  SYNTHETIC_DATA: false
  ZIP_MODE: false
EVAL_MODE: true
LOCAL_RANK: 0
MODEL:
  ARCH: efficientnet_b6
  CHECKPOINTS: null
  DROP_PATH_RATE: 0.1
  DROP_RATE: 0.0
  LABEL_SMOOTHING: 0.1
  NUM_CLASSES: 1000
  PRETRAINED: true
  RESUME: ''
OUTPUT: output/efficientnet_b6/default
PRINT_FREQ: 50
SAVE_FREQ: 1
SEED: 42
TAG: default
TEST:
  CROP: true
  SEQUENTIAL: false
THROUGHPUT_MODE: false
TRAIN:
  ACCUMULATION_STEPS: 0
  AUTO_RESUME: false
  BASE_LR: 0.1
  CLIP_GRAD: 5.0
  EPOCHS: 90
  LR_SCHEDULER:
    DECAY_EPOCHS: 30
    DECAY_RATE: 0.1
    MILESTONES:
    - 150
    - 225
    NAME: step
  MIN_LR: 1.25e-06
  OPTIMIZER:
    BETAS:
    - 0.9
    - 0.999
    EPS: 1.0e-08
    MOMENTUM: 0.9
    NAME: sgd
  START_EPOCH: 0
  USE_CHECKPOINT: false
  WARMUP_EPOCHS: 0
  WARMUP_LR: 5.0e-07
  WEIGHT_DECAY: 0.0001

Inference
cd CoModels/cv/classification/efficientnet_b6
bash  infer.sh
训练过程
  • 训练日志 :

image

推理结果 INFO * Acc@1 47.688 Acc@5 58.346

@kokuro-asahi
Copy link
Contributor Author

kokuro-asahi commented Nov 15, 2023

EfficientNet_b7


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: dea3f43
  • flowvision: 0.2.1
  • CoModels commit: 834321b
Training
cd CoModels/cv/classification/efficientnet_b7
bash train.sh
训练所用超参数
AMP_OPT_LEVEL: ''
AUG:
  AUTO_AUGMENT: rand-m9-mstd0.5-inc1
  COLOR_JITTER: 0.4
  CUTMIX: 0.0
  CUTMIX_MINMAX: null
  MIXUP: 0.0
  MIXUP_MODE: batch
  MIXUP_PROB: 1.0
  MIXUP_SWITCH_PROB: 0.5
  RECOUNT: 1
  REMODE: pixel
  REPROB: 0.25
BASE:
- ''
DATA:
  BATCH_SIZE: 32
  CACHE_MODE: part
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224
  INTERPOLATION: bicubic
  NUM_CLASSES: 1000
  NUM_WORKERS: 4
  PIN_MEMORY: true
  SYNTHETIC_DATA: false
  ZIP_MODE: false
EVAL_MODE: true
LOCAL_RANK: 0
MODEL:
  ARCH: efficientnet_b7
  CHECKPOINTS: null
  DROP_PATH_RATE: 0.1
  DROP_RATE: 0.0
  LABEL_SMOOTHING: 0.1
  NUM_CLASSES: 1000
  PRETRAINED: true
  RESUME: ''
OUTPUT: output/efficientnet_b7/default
PRINT_FREQ: 50
SAVE_FREQ: 1
SEED: 42
TAG: default
TEST:
  CROP: true
  SEQUENTIAL: false
THROUGHPUT_MODE: false
TRAIN:
  ACCUMULATION_STEPS: 0
  AUTO_RESUME: false
  BASE_LR: 0.1
  CLIP_GRAD: 5.0
  EPOCHS: 90
  LR_SCHEDULER:
    DECAY_EPOCHS: 30
    DECAY_RATE: 0.1
    MILESTONES:
    - 150
    - 225
    NAME: step
  MIN_LR: 1.25e-06
  OPTIMIZER:
    BETAS:
    - 0.9
    - 0.999
    EPS: 1.0e-08
    MOMENTUM: 0.9
    NAME: sgd
  START_EPOCH: 0
  USE_CHECKPOINT: false
  WARMUP_EPOCHS: 0
  WARMUP_LR: 5.0e-07
  WEIGHT_DECAY: 0.0001

Inference
cd CoModels/cv/classification/efficientnet_b7
bash  infer.sh
训练过程
  • 训练日志 :

image

推理结果 INFO * Acc@1 59.689 Acc@5 83.967

@akeeei
Copy link
Contributor

akeeei commented Nov 16, 2023

deit_tiny_patch16_224


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 55b5dc1
Training
cd CoModels/cv/classification/deit_tiny_patch16_224
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 256
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 90
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 5e-5
  WARMUP_LR: 5e-7

  LR_SCHEDULER:
    NAME: step

  OPTIMIZER:
    NAME: sgd
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/deit_tiny_patch16_224
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 72.266 Acc@5 91.309
INFO Accuracy of the network on the 49 test images: 72.3%
INFO Max accuracy: 72.27%
INFO Training time 0:38:55
推理结果
INFO  * Acc@1 72.141 Acc@5 91.159
INFO Accuracy of the network on the 1563 test images: 72.1%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 1955.4064216855359

@akeeei
Copy link
Contributor

akeeei commented Nov 16, 2023

deit_base_patch16_224


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 3262c83
Training
cd CoModels/cv/classification/deit_base_patch16_224
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 32
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 90
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 5e-5
  WARMUP_LR: 5e-7

  LR_SCHEDULER:
    NAME: step

  OPTIMIZER:
    NAME: sgd
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/deit_base_patch16_224
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 81.535 Acc@5 95.444
INFO Accuracy of the network on the 391 test images: 81.5%
INFO Max accuracy: 81.53%
INFO Training time 2:39:41
推理结果
INFO  * Acc@1 81.816 Acc@5 95.592
INFO Accuracy of the network on the 1563 test images: 81.8%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 134.9496680093491

@akeeei
Copy link
Contributor

akeeei commented Nov 16, 2023

deit_base_patch16_384


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 124adb2
Training
cd CoModels/cv/classification/deit_base_patch16_384
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 16
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 384

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 90
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7

  LR_SCHEDULER:
    NAME: step

  OPTIMIZER:
    NAME: sgd
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/deit_base_patch16_384
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 82.885 Acc@5 96.207
INFO Accuracy of the network on the 782 test images: 82.9%
INFO Max accuracy: 82.96%
INFO Training time 6:03:41
推理结果
INFO  * Acc@1 82.872 Acc@5 96.234
INFO Accuracy of the network on the 1563 test images: 82.9%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 52.672114994542234

@kokuro-asahi
Copy link
Contributor Author

kokuro-asahi commented Nov 16, 2023

regnet_y_400mf


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: dea3f43
  • flowvision: 0.2.1
  • CoModels commit: 8a056c8
Training
cd CoModels/cv/classification/regnet_y_400mf
bash train.sh
训练所用超参数
AMP_OPT_LEVEL: ''
AUG:
  AUTO_AUGMENT: rand-m9-mstd0.5-inc1
  COLOR_JITTER: 0.4
  CUTMIX: 0.0
  CUTMIX_MINMAX: null
  MIXUP: 0.0
  MIXUP_MODE: batch
  MIXUP_PROB: 1.0
  MIXUP_SWITCH_PROB: 0.5
  RECOUNT: 1
  REMODE: pixel
  REPROB: 0.25
BASE:
- ''
DATA:
  BATCH_SIZE: 128
  CACHE_MODE: part
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224
  INTERPOLATION: bicubic
  NUM_CLASSES: 1000
  NUM_WORKERS: 4
  PIN_MEMORY: true
  SYNTHETIC_DATA: false
  ZIP_MODE: false
EVAL_MODE: true
LOCAL_RANK: 0
MODEL:
  ARCH: regnet_y_400mf
  CHECKPOINTS: null
  DROP_PATH_RATE: 0.1
  DROP_RATE: 0.0
  LABEL_SMOOTHING: 0.1
  NUM_CLASSES: 1000
  PRETRAINED: true
  RESUME: ''
OUTPUT: output/regnet_y_400mf/default
PRINT_FREQ: 50
SAVE_FREQ: 1
SEED: 42
TAG: default
TEST:
  CROP: true
  SEQUENTIAL: false
THROUGHPUT_MODE: false
TRAIN:
  ACCUMULATION_STEPS: 0
  AUTO_RESUME: false
  BASE_LR: 0.4
  CLIP_GRAD: 5.0
  EPOCHS: 100
  LR_SCHEDULER:
    DECAY_EPOCHS: 30
    DECAY_RATE: 0.1
    MILESTONES:
    - 150
    - 225
    NAME: cosine
  MIN_LR: 5.0e-06
  OPTIMIZER:
    BETAS:
    - 0.9
    - 0.999
    EPS: 1.0e-08
    MOMENTUM: 0.9
    NAME: sgd
  START_EPOCH: 0
  USE_CHECKPOINT: false
  WARMUP_EPOCHS: 5
  WARMUP_LR: 5.0e-07
  WEIGHT_DECAY: 5.0e-05

Inference
cd CoModels/cv/classification/regnet_y_400mf
bash  infer.sh
训练过程
  • 训练日志 :

image

推理结果 INFO * Acc@1 78.245 Acc@5 93.542

@kokuro-asahi
Copy link
Contributor Author

kokuro-asahi commented Nov 16, 2023

regnet_y_800mf


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: dea3f43
  • flowvision: 0.2.1
  • CoModels commit: 11c79bc
Training
cd CoModels/cv/classification/regnet_y_800mf
bash train.sh
训练所用超参数
AMP_OPT_LEVEL: ''
AUG:
  AUTO_AUGMENT: rand-m9-mstd0.5-inc1
  COLOR_JITTER: 0.4
  CUTMIX: 0.0
  CUTMIX_MINMAX: null
  MIXUP: 0.0
  MIXUP_MODE: batch
  MIXUP_PROB: 1.0
  MIXUP_SWITCH_PROB: 0.5
  RECOUNT: 1
  REMODE: pixel
  REPROB: 0.25
BASE:
- ''
DATA:
  BATCH_SIZE: 128
  CACHE_MODE: part
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224
  INTERPOLATION: bicubic
  NUM_CLASSES: 1000
  NUM_WORKERS: 4
  PIN_MEMORY: true
  SYNTHETIC_DATA: false
  ZIP_MODE: false
EVAL_MODE: true
LOCAL_RANK: 0
MODEL:
  ARCH: regnet_y_800mf
  CHECKPOINTS: null
  DROP_PATH_RATE: 0.1
  DROP_RATE: 0.0
  LABEL_SMOOTHING: 0.1
  NUM_CLASSES: 1000
  PRETRAINED: true
  RESUME: ''
OUTPUT: output/regnet_y_800mf/default
PRINT_FREQ: 50
SAVE_FREQ: 1
SEED: 42
TAG: default
TEST:
  CROP: true
  SEQUENTIAL: false
THROUGHPUT_MODE: false
TRAIN:
  ACCUMULATION_STEPS: 0
  AUTO_RESUME: false
  BASE_LR: 0.4
  CLIP_GRAD: 5.0
  EPOCHS: 100
  LR_SCHEDULER:
    DECAY_EPOCHS: 30
    DECAY_RATE: 0.1
    MILESTONES:
    - 150
    - 225
    NAME: cosine
  MIN_LR: 5.0e-06
  OPTIMIZER:
    BETAS:
    - 0.9
    - 0.999
    EPS: 1.0e-08
    MOMENTUM: 0.9
    NAME: sgd
  START_EPOCH: 0
  USE_CHECKPOINT: false
  WARMUP_EPOCHS: 5
  WARMUP_LR: 5.0e-07
  WEIGHT_DECAY: 5.0e-05

Inference
cd CoModels/cv/classification/regnet_y_800mf
bash  infer.sh
训练过程
  • 训练日志 :

image

推理结果 INFO * Acc@1 58.245 Acc@5 72.457

@kokuro-asahi
Copy link
Contributor Author

kokuro-asahi commented Nov 16, 2023

regnet_y_1_6gf


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: dea3f43
  • flowvision: 0.2.1
  • CoModels commit: 6162652
Training
cd CoModels/cv/classification/regnet_y_1_6gf
bash train.sh
训练所用超参数
AMP_OPT_LEVEL: ''
AUG:
  AUTO_AUGMENT: rand-m9-mstd0.5-inc1
  COLOR_JITTER: 0.4
  CUTMIX: 0.0
  CUTMIX_MINMAX: null
  MIXUP: 0.0
  MIXUP_MODE: batch
  MIXUP_PROB: 1.0
  MIXUP_SWITCH_PROB: 0.5
  RECOUNT: 1
  REMODE: pixel
  REPROB: 0.25
BASE:
- ''
DATA:
  BATCH_SIZE: 128
  CACHE_MODE: part
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224
  INTERPOLATION: bicubic
  NUM_CLASSES: 1000
  NUM_WORKERS: 4
  PIN_MEMORY: true
  SYNTHETIC_DATA: false
  ZIP_MODE: false
EVAL_MODE: true
LOCAL_RANK: 0
MODEL:
  ARCH: regnet_y_1_6gf
  CHECKPOINTS: null
  DROP_PATH_RATE: 0.1
  DROP_RATE: 0.0
  LABEL_SMOOTHING: 0.1
  NUM_CLASSES: 1000
  PRETRAINED: true
  RESUME: ''
OUTPUT: output/regnet_y_1_6gf/default
PRINT_FREQ: 50
SAVE_FREQ: 1
SEED: 42
TAG: default
TEST:
  CROP: true
  SEQUENTIAL: false
THROUGHPUT_MODE: false
TRAIN:
  ACCUMULATION_STEPS: 0
  AUTO_RESUME: false
  BASE_LR: 0.4
  CLIP_GRAD: 5.0
  EPOCHS: 100
  LR_SCHEDULER:
    DECAY_EPOCHS: 30
    DECAY_RATE: 0.1
    MILESTONES:
    - 150
    - 225
    NAME: cosine
  MIN_LR: 5.0e-06
  OPTIMIZER:
    BETAS:
    - 0.9
    - 0.999
    EPS: 1.0e-08
    MOMENTUM: 0.9
    NAME: sgd
  START_EPOCH: 0
  USE_CHECKPOINT: false
  WARMUP_EPOCHS: 5
  WARMUP_LR: 5.0e-07
  WEIGHT_DECAY: 5.0e-05

Inference
cd CoModels/cv/classification/regnet_y_1_6gf
bash  infer.sh
训练过程
  • 训练日志 :

image

推理结果 INFO * Acc@1 40.984 Acc@5 69.236

@iwkkk
Copy link
Contributor

iwkkk commented Nov 20, 2023

dla46_c


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: dea3f43
  • flowvision: 0.2.1
  • CoModels commit: b696752
Training
cd CoModels/cv/classification/dla46_c
bash train.sh
训练所用超参数
AMP_OPT_LEVEL: ''
AUG:
  AUTO_AUGMENT: rand-m9-mstd0.5-inc1
  COLOR_JITTER: 0.4
  CUTMIX: 0.0
  CUTMIX_MINMAX: null
  MIXUP: 0.0
  MIXUP_MODE: batch
  MIXUP_PROB: 1.0
  MIXUP_SWITCH_PROB: 0.5
  RECOUNT: 1
  REMODE: pixel
  REPROB: 0.25
BASE:
- ''
DATA:
  BATCH_SIZE: 16
  CACHE_MODE: part
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224
  INTERPOLATION: bicubic
  NUM_CLASSES: 1000
  NUM_WORKERS: 8
  PIN_MEMORY: true
  SYNTHETIC_DATA: false
  ZIP_MODE: false
EVAL_MODE: true
LOCAL_RANK: 0
MODEL:
  ARCH: dla46_c
  CHECKPOINTS: null
  DROP_PATH_RATE: 0.1
  DROP_RATE: 0.0
  LABEL_SMOOTHING: 0.1
  NUM_CLASSES: 1000
  PRETRAINED: true
  RESUME: ''
OUTPUT: output/dla46_c/default
PRINT_FREQ: 50
SAVE_FREQ: 1
SEED: 42
TAG: default
TEST:
  CROP: true
  SEQUENTIAL: false
THROUGHPUT_MODE: false
TRAIN:
  ACCUMULATION_STEPS: 0
  AUTO_RESUME: false
  BASE_LR: 0.001
  CLIP_GRAD: 5.0
  EPOCHS: 90
  LR_SCHEDULER:
    DECAY_EPOCHS: 30
    DECAY_RATE: 0.1
    MILESTONES:
    - 150
    - 225
    NAME: step
  MIN_LR: 6.25e-07
  OPTIMIZER:
    BETAS:
    - 0.9
    - 0.999
    EPS: 1.0e-08
    MOMENTUM: 0.9
    NAME: sgd
  START_EPOCH: 0
  USE_CHECKPOINT: false
  WARMUP_EPOCHS: 0
  WARMUP_LR: 5.0e-07
  WEIGHT_DECAY: 0.0001

Inference
cd CoModels/cv/classification/dla46_c
bash  infer.sh
训练过程(2 epochs)
  • 训练日志 :
    image
推理结果 INFO * Acc@1 64.493 Acc@5 86.099 INFO Accuracy of the network on the 3125 test images: 64.5%

@iwkkk
Copy link
Contributor

iwkkk commented Nov 20, 2023

dla46x_c


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: dea3f43
  • flowvision: 0.2.1
  • CoModels commit: f81242e
Training
cd CoModels/cv/classification/dla46x_c
bash train.sh
训练所用超参数
AMP_OPT_LEVEL: ''
AUG:
  AUTO_AUGMENT: rand-m9-mstd0.5-inc1
  COLOR_JITTER: 0.4
  CUTMIX: 0.0
  CUTMIX_MINMAX: null
  MIXUP: 0.0
  MIXUP_MODE: batch
  MIXUP_PROB: 1.0
  MIXUP_SWITCH_PROB: 0.5
  RECOUNT: 1
  REMODE: pixel
  REPROB: 0.25
BASE:
- ''
DATA:
  BATCH_SIZE: 16
  CACHE_MODE: part
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224
  INTERPOLATION: bicubic
  NUM_CLASSES: 1000
  NUM_WORKERS: 8
  PIN_MEMORY: true
  SYNTHETIC_DATA: false
  ZIP_MODE: false
EVAL_MODE: true
LOCAL_RANK: 0
MODEL:
  ARCH: dla46x_c
  CHECKPOINTS: null
  DROP_PATH_RATE: 0.1
  DROP_RATE: 0.0
  LABEL_SMOOTHING: 0.1
  NUM_CLASSES: 1000
  PRETRAINED: true
  RESUME: ''
OUTPUT: output/dla46x_c/default
PRINT_FREQ: 50
SAVE_FREQ: 1
SEED: 42
TAG: default
TEST:
  CROP: true
  SEQUENTIAL: false
THROUGHPUT_MODE: false
TRAIN:
  ACCUMULATION_STEPS: 0
  AUTO_RESUME: false
  BASE_LR: 0.001
  CLIP_GRAD: 5.0
  EPOCHS: 90
  LR_SCHEDULER:
    DECAY_EPOCHS: 30
    DECAY_RATE: 0.1
    MILESTONES:
    - 150
    - 225
    NAME: step
  MIN_LR: 6.25e-07
  OPTIMIZER:
    BETAS:
    - 0.9
    - 0.999
    EPS: 1.0e-08
    MOMENTUM: 0.9
    NAME: sgd
  START_EPOCH: 0
  USE_CHECKPOINT: false
  WARMUP_EPOCHS: 0
  WARMUP_LR: 5.0e-07
  WEIGHT_DECAY: 0.0001

Inference
cd CoModels/cv/classification/dla46x_c
bash  infer.sh
训练过程(3 epochs)
  • 训练日志 :
    image
推理结果 INFO * Acc@1 65.656 Acc@5 86.662 INFO Accuracy of the network on the 3125 test images: 65.7%

@iwkkk
Copy link
Contributor

iwkkk commented Nov 20, 2023

dla60


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: dea3f43
  • flowvision: 0.2.1
  • CoModels commit: '85f3944'
Training
cd CoModels/cv/classification/dla60
bash train.sh
训练所用超参数
AMP_OPT_LEVEL: ''
AUG:
  AUTO_AUGMENT: rand-m9-mstd0.5-inc1
  COLOR_JITTER: 0.4
  CUTMIX: 0.0
  CUTMIX_MINMAX: null
  MIXUP: 0.0
  MIXUP_MODE: batch
  MIXUP_PROB: 1.0
  MIXUP_SWITCH_PROB: 0.5
  RECOUNT: 1
  REMODE: pixel
  REPROB: 0.25
BASE:
- ''
DATA:
  BATCH_SIZE: 16
  CACHE_MODE: part
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224
  INTERPOLATION: bicubic
  NUM_CLASSES: 1000
  NUM_WORKERS: 8
  PIN_MEMORY: true
  SYNTHETIC_DATA: false
  ZIP_MODE: false
EVAL_MODE: true
LOCAL_RANK: 0
MODEL:
  ARCH: dla60
  CHECKPOINTS: null
  DROP_PATH_RATE: 0.1
  DROP_RATE: 0.0
  LABEL_SMOOTHING: 0.1
  NUM_CLASSES: 1000
  PRETRAINED: true
  RESUME: ''
OUTPUT: output/dla60/default
PRINT_FREQ: 50
SAVE_FREQ: 1
SEED: 42
TAG: default
TEST:
  CROP: true
  SEQUENTIAL: false
THROUGHPUT_MODE: false
TRAIN:
  ACCUMULATION_STEPS: 0
  AUTO_RESUME: false
  BASE_LR: 0.001
  CLIP_GRAD: 5.0
  EPOCHS: 90
  LR_SCHEDULER:
    DECAY_EPOCHS: 30
    DECAY_RATE: 0.1
    MILESTONES:
    - 150
    - 225
    NAME: step
  MIN_LR: 6.25e-07
  OPTIMIZER:
    BETAS:
    - 0.9
    - 0.999
    EPS: 1.0e-08
    MOMENTUM: 0.9
    NAME: sgd
  START_EPOCH: 0
  USE_CHECKPOINT: false
  WARMUP_EPOCHS: 0
  WARMUP_LR: 5.0e-07
  WEIGHT_DECAY: 0.0001

Inference
cd CoModels/cv/classification/dla60
bash  infer.sh
训练过程(1 epoch)
  • 训练日志 :
    image
推理结果 INFO * Acc@1 76.824 Acc@5 93.188 INFO Accuracy of the network on the 3125 test images: 76.8%

@iwkkk
Copy link
Contributor

iwkkk commented Nov 20, 2023

dla60x


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: dea3f43
  • flowvision: 0.2.1
  • CoModels commit: 4bf5419
Training
cd CoModels/cv/classification/dla60x
bash train.sh
训练所用超参数
AMP_OPT_LEVEL: ''
AUG:
  AUTO_AUGMENT: rand-m9-mstd0.5-inc1
  COLOR_JITTER: 0.4
  CUTMIX: 0.0
  CUTMIX_MINMAX: null
  MIXUP: 0.0
  MIXUP_MODE: batch
  MIXUP_PROB: 1.0
  MIXUP_SWITCH_PROB: 0.5
  RECOUNT: 1
  REMODE: pixel
  REPROB: 0.25
BASE:
- ''
DATA:
  BATCH_SIZE: 16
  CACHE_MODE: part
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224
  INTERPOLATION: bicubic
  NUM_CLASSES: 1000
  NUM_WORKERS: 8
  PIN_MEMORY: true
  SYNTHETIC_DATA: false
  ZIP_MODE: false
EVAL_MODE: true
LOCAL_RANK: 0
MODEL:
  ARCH: dla60x
  CHECKPOINTS: null
  DROP_PATH_RATE: 0.1
  DROP_RATE: 0.0
  LABEL_SMOOTHING: 0.1
  NUM_CLASSES: 1000
  PRETRAINED: true
  RESUME: ''
OUTPUT: output/dla60x/default
PRINT_FREQ: 50
SAVE_FREQ: 1
SEED: 42
TAG: default
TEST:
  CROP: true
  SEQUENTIAL: false
THROUGHPUT_MODE: false
TRAIN:
  ACCUMULATION_STEPS: 0
  AUTO_RESUME: false
  BASE_LR: 0.001
  CLIP_GRAD: 5.0
  EPOCHS: 90
  LR_SCHEDULER:
    DECAY_EPOCHS: 30
    DECAY_RATE: 0.1
    MILESTONES:
    - 150
    - 225
    NAME: step
  MIN_LR: 6.25e-07
  OPTIMIZER:
    BETAS:
    - 0.9
    - 0.999
    EPS: 1.0e-08
    MOMENTUM: 0.9
    NAME: sgd
  START_EPOCH: 0
  USE_CHECKPOINT: false
  WARMUP_EPOCHS: 0
  WARMUP_LR: 5.0e-07
  WEIGHT_DECAY: 0.0001

Inference
cd CoModels/cv/classification/dla60x
bash  infer.sh
训练过程(1 epoch)
  • 训练日志 :
    image
推理结果 INFO * Acc@1 78.070 Acc@5 93.958 INFO Accuracy of the network on the 3125 test images: 78.1%

@iwkkk
Copy link
Contributor

iwkkk commented Nov 20, 2023

dla60x_c


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: dea3f43
  • flowvision: 0.2.1
  • CoModels commit: 0703522
Training
cd CoModels/cv/classification/dla60x_c
bash train.sh
训练所用超参数
AMP_OPT_LEVEL: ''
AUG:
  AUTO_AUGMENT: rand-m9-mstd0.5-inc1
  COLOR_JITTER: 0.4
  CUTMIX: 0.0
  CUTMIX_MINMAX: null
  MIXUP: 0.0
  MIXUP_MODE: batch
  MIXUP_PROB: 1.0
  MIXUP_SWITCH_PROB: 0.5
  RECOUNT: 1
  REMODE: pixel
  REPROB: 0.25
BASE:
- ''
DATA:
  BATCH_SIZE: 16
  CACHE_MODE: part
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224
  INTERPOLATION: bicubic
  NUM_CLASSES: 1000
  NUM_WORKERS: 8
  PIN_MEMORY: true
  SYNTHETIC_DATA: false
  ZIP_MODE: false
EVAL_MODE: true
LOCAL_RANK: 0
MODEL:
  ARCH: dla60x_c
  CHECKPOINTS: null
  DROP_PATH_RATE: 0.1
  DROP_RATE: 0.0
  LABEL_SMOOTHING: 0.1
  NUM_CLASSES: 1000
  PRETRAINED: true
  RESUME: ''
OUTPUT: output/dla60x_c/default
PRINT_FREQ: 50
SAVE_FREQ: 1
SEED: 42
TAG: default
TEST:
  CROP: true
  SEQUENTIAL: false
THROUGHPUT_MODE: false
TRAIN:
  ACCUMULATION_STEPS: 0
  AUTO_RESUME: false
  BASE_LR: 0.001
  CLIP_GRAD: 5.0
  EPOCHS: 90
  LR_SCHEDULER:
    DECAY_EPOCHS: 30
    DECAY_RATE: 0.1
    MILESTONES:
    - 150
    - 225
    NAME: step
  MIN_LR: 6.25e-07
  OPTIMIZER:
    BETAS:
    - 0.9
    - 0.999
    EPS: 1.0e-08
    MOMENTUM: 0.9
    NAME: sgd
  START_EPOCH: 0
  USE_CHECKPOINT: false
  WARMUP_EPOCHS: 0
  WARMUP_LR: 5.0e-07
  WEIGHT_DECAY: 0.0001

Inference
cd CoModels/cv/classification/dla60x_c
bash  infer.sh
训练过程(1 epoch)
  • 训练日志 :
    image
推理结果 INFO * Acc@1 67.549 Acc@5 88.213 INFO Accuracy of the network on the 3125 test images: 67.5%

@iwkkk
Copy link
Contributor

iwkkk commented Nov 20, 2023

dla102


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: dea3f43
  • flowvision: 0.2.1
  • CoModels commit: 3a5f0b1
Training
cd CoModels/cv/classification/dla102
bash train.sh
训练所用超参数
AMP_OPT_LEVEL: ''
AUG:
  AUTO_AUGMENT: rand-m9-mstd0.5-inc1
  COLOR_JITTER: 0.4
  CUTMIX: 0.0
  CUTMIX_MINMAX: null
  MIXUP: 0.0
  MIXUP_MODE: batch
  MIXUP_PROB: 1.0
  MIXUP_SWITCH_PROB: 0.5
  RECOUNT: 1
  REMODE: pixel
  REPROB: 0.25
BASE:
- ''
DATA:
  BATCH_SIZE: 16
  CACHE_MODE: part
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224
  INTERPOLATION: bicubic
  NUM_CLASSES: 1000
  NUM_WORKERS: 8
  PIN_MEMORY: true
  SYNTHETIC_DATA: false
  ZIP_MODE: false
EVAL_MODE: true
LOCAL_RANK: 0
MODEL:
  ARCH: dla102
  CHECKPOINTS: null
  DROP_PATH_RATE: 0.1
  DROP_RATE: 0.0
  LABEL_SMOOTHING: 0.1
  NUM_CLASSES: 1000
  PRETRAINED: true
  RESUME: ''
OUTPUT: output/dla102/default
PRINT_FREQ: 50
SAVE_FREQ: 1
SEED: 42
TAG: default
TEST:
  CROP: true
  SEQUENTIAL: false
THROUGHPUT_MODE: false
TRAIN:
  ACCUMULATION_STEPS: 0
  AUTO_RESUME: false
  BASE_LR: 0.001
  CLIP_GRAD: 5.0
  EPOCHS: 90
  LR_SCHEDULER:
    DECAY_EPOCHS: 30
    DECAY_RATE: 0.1
    MILESTONES:
    - 150
    - 225
    NAME: step
  MIN_LR: 6.25e-07
  OPTIMIZER:
    BETAS:
    - 0.9
    - 0.999
    EPS: 1.0e-08
    MOMENTUM: 0.9
    NAME: sgd
  START_EPOCH: 0
  USE_CHECKPOINT: false
  WARMUP_EPOCHS: 0
  WARMUP_LR: 5.0e-07
  WEIGHT_DECAY: 0.0001

Inference
cd CoModels/cv/classification/dla102
bash  infer.sh
训练过程(1 epoch)
  • 训练日志 :
    image
推理结果 INFO * Acc@1 77.711 Acc@5 93.788 INFO Accuracy of the network on the 3125 test images: 77.7%

@iwkkk
Copy link
Contributor

iwkkk commented Nov 20, 2023

dla102x


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: dea3f43
  • flowvision: 0.2.1
  • CoModels commit: 26922fb
Training
cd CoModels/cv/classification/dla102x
bash train.sh
训练所用超参数
AMP_OPT_LEVEL: ''
AUG:
  AUTO_AUGMENT: rand-m9-mstd0.5-inc1
  COLOR_JITTER: 0.4
  CUTMIX: 0.0
  CUTMIX_MINMAX: null
  MIXUP: 0.0
  MIXUP_MODE: batch
  MIXUP_PROB: 1.0
  MIXUP_SWITCH_PROB: 0.5
  RECOUNT: 1
  REMODE: pixel
  REPROB: 0.25
BASE:
- ''
DATA:
  BATCH_SIZE: 16
  CACHE_MODE: part
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224
  INTERPOLATION: bicubic
  NUM_CLASSES: 1000
  NUM_WORKERS: 8
  PIN_MEMORY: true
  SYNTHETIC_DATA: false
  ZIP_MODE: false
EVAL_MODE: true
LOCAL_RANK: 0
MODEL:
  ARCH: dla102x
  CHECKPOINTS: null
  DROP_PATH_RATE: 0.1
  DROP_RATE: 0.0
  LABEL_SMOOTHING: 0.1
  NUM_CLASSES: 1000
  PRETRAINED: true
  RESUME: ''
OUTPUT: output/dla102x/default
PRINT_FREQ: 50
SAVE_FREQ: 1
SEED: 42
TAG: default
TEST:
  CROP: true
  SEQUENTIAL: false
THROUGHPUT_MODE: false
TRAIN:
  ACCUMULATION_STEPS: 0
  AUTO_RESUME: false
  BASE_LR: 0.001
  CLIP_GRAD: 5.0
  EPOCHS: 90
  LR_SCHEDULER:
    DECAY_EPOCHS: 30
    DECAY_RATE: 0.1
    MILESTONES:
    - 150
    - 225
    NAME: step
  MIN_LR: 6.25e-07
  OPTIMIZER:
    BETAS:
    - 0.9
    - 0.999
    EPS: 1.0e-08
    MOMENTUM: 0.9
    NAME: sgd
  START_EPOCH: 0
  USE_CHECKPOINT: false
  WARMUP_EPOCHS: 0
  WARMUP_LR: 5.0e-07
  WEIGHT_DECAY: 0.0001

Inference
cd CoModels/cv/classification/dla102x
bash  infer.sh
训练过程(2 epochs)
  • 训练日志 :
    image
推理结果 INFO * Acc@1 78.283 Acc@5 94.101 INFO Accuracy of the network on the 3125 test images: 78.3%

@Drlifei
Copy link
Contributor

Drlifei commented Nov 21, 2023

deit_large_patch16_LS_224


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: da87b13
Training
cd CoModels/cv/classification/deit_large_patch16_LS_224
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 32
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 90
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7

  LR_SCHEDULER:
    NAME: step

  OPTIMIZER:
    NAME: sgd
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/deit_large_patch16_LS_224
bash  infer.sh
训练过程
  • 训练日志 :

image

推理结果

image

@Drlifei
Copy link
Contributor

Drlifei commented Nov 21, 2023

deit_small_patch16_LS_224


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 6115505
Training
cd CoModels/cv/classification/deit_small_patch16_LS_224
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 32
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 90
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7

  LR_SCHEDULER:
    NAME: step

  OPTIMIZER:
    NAME: sgd
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/deit_small_patch16_LS_224
bash  infer.sh
训练过程
  • 训练日志 :

image

推理结果

image

@Drlifei
Copy link
Contributor

Drlifei commented Nov 21, 2023

deit_large_patch16_LS_384


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 334cfc1
Training
cd CoModels/cv/classification/deit_large_patch16_LS_384
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 32
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 90
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7

  LR_SCHEDULER:
    NAME: step

  OPTIMIZER:
    NAME: sgd
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/deit_large_patch16_LS_384
bash  infer.sh
训练过程
  • 训练日志 :

image

推理结果

image

@Drlifei
Copy link
Contributor

Drlifei commented Nov 21, 2023

deit_small_patch16_LS_384


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 464fcd5
Training
cd CoModels/cv/classification/deit_small_patch16_LS_384
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 32
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 90
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7

  LR_SCHEDULER:
    NAME: step

  OPTIMIZER:
    NAME: sgd
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/deit_small_patch16_LS_384
bash  infer.sh
训练过程
  • 训练日志 :

企业微信截图_17004598591082
image

推理结果

image

@akeeei
Copy link
Contributor

akeeei commented Nov 21, 2023

Fan-ViT-small


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 8021d78
Training
cd CoModels/cv/classification/fan_vit_small
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 64
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 90
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7

  LR_SCHEDULER:
    NAME: step

  OPTIMIZER:
    NAME: sgd
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/fan_vit_small
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 82.238 Acc@5 96.037
INFO Accuracy of the network on the 196 test images: 82.2%
INFO Max accuracy: 82.24%
INFO Training time 2:23:30
推理结果
INFO  * Acc@1 82.471 Acc@5 96.216
INFO Accuracy of the network on the 1563 test images: 82.5%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 217.21194210108126

@akeeei
Copy link
Contributor

akeeei commented Nov 21, 2023

Fan-ViT-tiny


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 0a5b6fb
Training
cd CoModels/cv/classification/fan_vit_tiny
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 32
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 90
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7

  LR_SCHEDULER:
    NAME: step

  OPTIMIZER:
    NAME: sgd
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/fan_vit_tiny
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 79.013 Acc@5 94.487
INFO Accuracy of the network on the 391 test images: 79.0%
INFO Max accuracy: 79.01%
INFO Training time 3:24:50
推理结果
INFO  * Acc@1 79.122 Acc@5 94.610
INFO Accuracy of the network on the 1563 test images: 79.1%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 357.83025676395147

@akeeei
Copy link
Contributor

akeeei commented Nov 21, 2023

fan_hybrid_base_in22k_1k


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 94d67d4
Training
cd CoModels/cv/classification/fan_hybrid_base_in22k_1k
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 32
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 90
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7

  LR_SCHEDULER:
    NAME: step

  OPTIMIZER:
    NAME: sgd
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/fan_hybrid_base_in22k_1k
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 85.136 Acc@5 97.407
INFO Accuracy of the network on the 391 test images: 85.1%
INFO Max accuracy: 85.14%
INFO Training time 1:44:25
推理结果
INFO  * Acc@1 85.483 Acc@5 97.516
INFO Accuracy of the network on the 1563 test images: 85.5%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 158.6908637349492

@iwkkk
Copy link
Contributor

iwkkk commented Nov 21, 2023

dla169


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: dea3f43
  • flowvision: 0.2.1
  • CoModels commit: 5a89a30
Training
cd CoModels/cv/classification/dla169
bash train.sh
训练所用超参数
AMP_OPT_LEVEL: ''
AUG:
  AUTO_AUGMENT: rand-m9-mstd0.5-inc1
  COLOR_JITTER: 0.4
  CUTMIX: 0.0
  CUTMIX_MINMAX: null
  MIXUP: 0.0
  MIXUP_MODE: batch
  MIXUP_PROB: 1.0
  MIXUP_SWITCH_PROB: 0.5
  RECOUNT: 1
  REMODE: pixel
  REPROB: 0.25
BASE:
- ''
DATA:
  BATCH_SIZE: 32
  CACHE_MODE: part
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224
  INTERPOLATION: bicubic
  NUM_CLASSES: 1000
  NUM_WORKERS: 8
  PIN_MEMORY: true
  SYNTHETIC_DATA: false
  ZIP_MODE: false
EVAL_MODE: true
LOCAL_RANK: 0
MODEL:
  ARCH: dla169
  CHECKPOINTS: null
  DROP_PATH_RATE: 0.1
  DROP_RATE: 0.0
  LABEL_SMOOTHING: 0.1
  NUM_CLASSES: 1000
  PRETRAINED: true
  RESUME: ''
OUTPUT: output/dla169/default
PRINT_FREQ: 50
SAVE_FREQ: 1
SEED: 42
TAG: default
TEST:
  CROP: true
  SEQUENTIAL: false
THROUGHPUT_MODE: false
TRAIN:
  ACCUMULATION_STEPS: 0
  AUTO_RESUME: false
  BASE_LR: 0.001
  CLIP_GRAD: 5.0
  EPOCHS: 90
  LR_SCHEDULER:
    DECAY_EPOCHS: 30
    DECAY_RATE: 0.1
    MILESTONES:
    - 150
    - 225
    NAME: step
  MIN_LR: 1.25e-06
  OPTIMIZER:
    BETAS:
    - 0.9
    - 0.999
    EPS: 1.0e-08
    MOMENTUM: 0.9
    NAME: sgd
  START_EPOCH: 0
  USE_CHECKPOINT: false
  WARMUP_EPOCHS: 0
  WARMUP_LR: 5.0e-07
  WEIGHT_DECAY: 0.0001

Inference
cd CoModels/cv/classification/dla169
bash  infer.sh
训练过程(1 epoch)
  • 训练日志 :
    image
推理结果 INFO * Acc@1 78.530 Acc@5 94.282 INFO Accuracy of the network on the 1563 test images: 78.5%

@akeeei
Copy link
Contributor

akeeei commented Nov 22, 2023

Fluid simulation-ldc


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 513599f
Training
cd CoModels/science/ldc
bash train.sh
Inference
cd CoModels/science/ldc
bash  infer.sh
训练过程
num_epoch: 30000, loss: 1.00961
sub losses:
0.04032142
0.06947027
0.04393552
0.1423571
0.7135256
推理结果
Load checkpoint
100% [..............................................................................] 19311 / 19311
Start infer

经过推断,将生成三个后缀为vtu的文件,分别表示LDC问题的水平流速、垂直流速和压力分布。可以使用Paraview等软件对结果进行可视化和后期处理。

@akeeei
Copy link
Contributor

akeeei commented Nov 22, 2023

fan_hybrid_base_in22k_1k_384


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 7471d3e
Training
cd CoModels/cv/classification/fan_hybrid_base_in22k_1k
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 16
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 384

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 90
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7

  LR_SCHEDULER:
    NAME: step

  OPTIMIZER:
    NAME: sgd
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/fan_hybrid_base_in22k_1k
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 85.876 Acc@5 97.701
INFO Accuracy of the network on the 1563 test images: 85.9%
INFO Max accuracy: 85.88%
INFO Training time 5:01:29
推理结果
INFO  * Acc@1 83.982 Acc@5 97.006
INFO Accuracy of the network on the 1563 test images: 84.0%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 105.20254379907955

@akeeei
Copy link
Contributor

akeeei commented Nov 22, 2023

deit_base_patch16_LS_224


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 66017be
Training
cd CoModels/cv/classification/deit_base_patch16_LS_224
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 128
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 90
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-3
  WARMUP_LR: 5e-7

  LR_SCHEDULER:
    NAME: step

  OPTIMIZER:
    NAME: sgd
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/deit_base_patch16_LS_224
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 83.054 Acc@5 96.147
INFO Accuracy of the network on the 98 test images: 83.1%
INFO Max accuracy: 83.05%
INFO Training time 0:57:07
推理结果
INFO  * Acc@1 83.684 Acc@5 96.549
INFO Accuracy of the network on the 1563 test images: 83.7%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 266.17696222068827

@akeeei
Copy link
Contributor

akeeei commented Nov 22, 2023

fan_large_16_p4_hybrid_in22k_1k_384


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 5ac06cd
Training
cd CoModels/cv/classification/fan_large_16_p4_hybrid_in22k_1k_384
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 8
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 384

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 90
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7

  LR_SCHEDULER:
    NAME: step

  OPTIMIZER:
    NAME: sgd
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/fan_large_16_p4_hybrid_in22k_1k_384
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 86.908 Acc@5 98.005
INFO Accuracy of the network on the 1563 test images: 86.9%
INFO Max accuracy: 86.91%
INFO Training time 3:50:51
推理结果
INFO  * Acc@1 85.251 Acc@5 97.614
INFO Accuracy of the network on the 1563 test images: 85.3%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 242.6017645049282

@akeeei
Copy link
Contributor

akeeei commented Nov 22, 2023

fan_large_16_p4_hybrid_in22k_1k


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: df4b987
Training
cd CoModels/cv/classification/fan_large_16_p4_hybrid_in22k_1k
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 32
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 90
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7

  LR_SCHEDULER:
    NAME: step

  OPTIMIZER:
    NAME: sgd
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/fan_large_16_p4_hybrid_in22k_1k
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 86.171 Acc@5 97.823
INFO Accuracy of the network on the 391 test images: 86.2%
INFO Max accuracy: 86.17%
INFO Training time 1:16:32
推理结果
INFO  * Acc@1 86.382 Acc@5 97.933
INFO Accuracy of the network on the 1563 test images: 86.4%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 111.53712566903394

@akeeei
Copy link
Contributor

akeeei commented Nov 22, 2023

Equation inversion-Lorenz system


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 1cdb54a
Training
cd CoModels/science/lorenz_system
bash train.sh
Inference
cd CoModels/science/lorenz_system
bash  infer.sh
训练过程
num_epoch: 20000, loss: 0.02206432
sub losses:
0.005381995
0.005250522
0.01032578
1.64854e-05
0.001089531
variables:
C1: 10.00202
C2: 14.99769
C3: 2.667474
推理结果
Load checkpoint
100% [..............................................................................] 64755 / 64755
Start infer
Evaluate variables:
C1: 10.00202
C2: 14.99769
C3: 2.667474

@akeeei
Copy link
Contributor

akeeei commented Nov 23, 2023

poolformer_s24


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 6a6d75f
Training
cd CoModels/cv/classification/poolformer_s24
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 64
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 90
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7

  LR_SCHEDULER:
    NAME: step

  OPTIMIZER:
    NAME: sgd
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/poolformer_s24
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 80.182 Acc@5 95.005
INFO Accuracy of the network on the 196 test images: 80.2%
INFO Max accuracy: 80.18%
INFO Training time 1:14:36
推理结果
INFO  * Acc@1 80.301 Acc@5 95.140
INFO Accuracy of the network on the 1563 test images: 80.3%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 322.20938907454337

@akeeei
Copy link
Contributor

akeeei commented Nov 23, 2023

poolformer_s36


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: b5c776c
Training
cd CoModels/cv/classification/poolformer_s36
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 64
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 90
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7

  LR_SCHEDULER:
    NAME: step

  OPTIMIZER:
    NAME: sgd
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/poolformer_s36
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 81.035 Acc@5 95.338
INFO Accuracy of the network on the 196 test images: 81.0%
INFO Max accuracy: 81.04%
INFO Training time 1:38:42
推理结果
INFO  * Acc@1 81.276 Acc@5 95.457
INFO Accuracy of the network on the 1563 test images: 81.3%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 288.32020883483756

@akeeei
Copy link
Contributor

akeeei commented Nov 23, 2023

poolformer_m36


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: d62af08
Training
cd CoModels/cv/classification/poolformer_m36
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 64
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 90
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7

  LR_SCHEDULER:
    NAME: step

  OPTIMIZER:
    NAME: sgd
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/poolformer_m36
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 81.721 Acc@5 95.468
INFO Accuracy of the network on the 196 test images: 81.7%
INFO Max accuracy: 81.72%
INFO Training time 1:02:32
推理结果
INFO  * Acc@1 82.090 Acc@5 95.710
INFO Accuracy of the network on the 1563 test images: 82.1%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 589.16099251004

@akeeei
Copy link
Contributor

akeeei commented Nov 23, 2023

poolformer_m48


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: dea189a
Training
cd CoModels/cv/classification/poolformer_m48
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 64
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 90
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7

  LR_SCHEDULER:
    NAME: step

  OPTIMIZER:
    NAME: sgd
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/poolformer_m48
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 82.165 Acc@5 95.722
INFO Accuracy of the network on the 391 test images: 82.2%
INFO Max accuracy: 82.16%
INFO Training time 1:13:00
推理结果
INFO  * Acc@1 82.441 Acc@5 95.892
INFO Accuracy of the network on the 1563 test images: 82.4%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 445.26869289873656

@akeeei
Copy link
Contributor

akeeei commented Nov 24, 2023

pvt_medium


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: a06911a
Training
cd CoModels/cv/classification/pvt_medium
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 32
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 90
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7

  LR_SCHEDULER:
    NAME: step

  OPTIMIZER:
    NAME: sgd
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/pvt_medium
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 81.364 Acc@5 95.580
INFO Accuracy of the network on the 391 test images: 81.4%
INFO Max accuracy: 81.36%
INFO Training time 1:48:35
推理结果
INFO  * Acc@1 81.208 Acc@5 95.650
INFO Accuracy of the network on the 1563 test images: 81.2%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 236.46548065860975

@akeeei
Copy link
Contributor

akeeei commented Nov 24, 2023

pvt_tiny


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 269c2cb
Training
cd CoModels/cv/classification/pvt_tiny
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 64
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 90
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7

  LR_SCHEDULER:
    NAME: step

  OPTIMIZER:
    NAME: sgd
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/pvt_tiny
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 81.704 Acc@5 95.849
INFO Accuracy of the network on the 391 test images: 81.7%
INFO Max accuracy: 81.70%
INFO Training time 1:23:07
推理结果
INFO  * Acc@1 75.109 Acc@5 92.428
INFO Accuracy of the network on the 1563 test images: 75.1%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 655.271585262991

@akeeei
Copy link
Contributor

akeeei commented Nov 24, 2023

pvt_large


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: bce354e
Training
cd CoModels/cv/classification/pvt_large
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 32
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 90
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7

  LR_SCHEDULER:
    NAME: step

  OPTIMIZER:
    NAME: sgd
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/pvt_large
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 75.196 Acc@5 92.426
INFO Accuracy of the network on the 391 test images: 75.2%
INFO Max accuracy: 75.20%
INFO Training time 0:36:00
推理结果
INFO  * Acc@1 81.689 Acc@5 95.841
INFO Accuracy of the network on the 1563 test images: 81.7%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 164.84514218123954

@akeeei
Copy link
Contributor

akeeei commented Nov 24, 2023

deit_base_patch16_LS_224_in21k


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 9c3442d
Training
cd CoModels/cv/classification/deit_base_patch16_LS_224_in21k
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 32
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 90
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 5e-5
  WARMUP_LR: 5e-7

  LR_SCHEDULER:
    NAME: step

  OPTIMIZER:
    NAME: sgd
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/deit_base_patch16_LS_224_in21k
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 85.158 Acc@5 97.409
INFO Accuracy of the network on the 391 test images: 85.2%
INFO Max accuracy: 85.16%
INFO Training time 0:57:07
推理结果
INFO  * Acc@1 85.503 Acc@5 97.560
INFO Accuracy of the network on the 1563 test images: 85.5%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 570.4031648236078

@akeeei
Copy link
Contributor

akeeei commented Nov 24, 2023

vit_base_patch16_224_miil


  • 机器[email protected]
  • 数据集:imagenet
  • oneflow version: 0.9.1.dev20231017+cu117
  • oneflow git commit: 553c55e
  • flowvision: 0.2.1
  • CoModels commit: 0055013
Training
cd CoModels/cv/classification/vit_base_patch16_224_miil
bash train.sh
训练所用超参数
DATA:
  BATCH_SIZE: 32
  DATASET: imagenet
  DATA_PATH: /data/dataset/ImageNet/extract
  IMG_SIZE: 224

MODEL:
  PRETRAINED: True
  LABEL_SMOOTHING: 0.11

TRAIN:
  START_EPOCH: 0
  EPOCHS: 90
  WARMUP_EPOCHS: 30
  WEIGHT_DECAY: 0.3
  BASE_LR: 1e-4
  WARMUP_LR: 5e-7

  LR_SCHEDULER:
    NAME: step

  OPTIMIZER:
    NAME: sgd
    MOMENTUM: 0.9

Inference
cd CoModels/cv/classification/vit_base_patch16_224_miil
bash  infer.sh
训练过程
  • 训练日志 :

image

  • 训练结果 :
INFO  * Acc@1 75.447 Acc@5 92.909
INFO Accuracy of the network on the 391 test images: 75.4%
INFO Max accuracy: 75.45%
INFO Training time 1:37:03
推理结果
INFO  * Acc@1 33.865 Acc@5 53.165
INFO Accuracy of the network on the 1563 test images: 33.9%
INFO throughput averaged with 30 times
INFO batch_size 32 throughput 276.1159336251757

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

5 participants