|
| 1 | +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +// |
| 3 | +// Licensed under the Apache License, Version 2.0 (the "License"); you may |
| 4 | +// not use this file except in compliance with the License. |
| 5 | +// You may obtain a copy of the License at |
| 6 | +// |
| 7 | +// http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +// |
| 9 | +// Unless required by applicable law or agreed to in writing, software |
| 10 | +// distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +// See the License for the specific language governing permissions and |
| 13 | +// limitations under the License. |
| 14 | + |
| 15 | +#include "habanalabs/perf_lib_layer_params.h" |
| 16 | +#include "kernels/funcs.h" |
| 17 | +#include "kernels/hpu_funcs.h" |
| 18 | +#include "kernels/hpu_operator.h" |
| 19 | +#include "paddle/extension.h" |
| 20 | +#include "utils/utils.h" |
| 21 | + |
| 22 | +namespace custom_kernel { |
| 23 | + |
| 24 | +static const std::map<std::string_view, MoeActivationMode_t> activationModeMap = |
| 25 | + {{"gelu", MoeActivationMode_t::MOE_ACTIVATION_MODE_GELU}, |
| 26 | + {"relu", MoeActivationMode_t::MOE_ACTIVATION_MODE_RELU}, |
| 27 | + {"silu", MoeActivationMode_t::MOE_ACTIVATION_MODE_SILU}}; |
| 28 | + |
| 29 | +struct FusedMoEConfig { |
| 30 | + bool permuted_weights; |
| 31 | + bool fused_gemm; |
| 32 | + bool measurement_mode; |
| 33 | + std::string_view activation_mode; |
| 34 | + int32_t num_experts; |
| 35 | + int32_t experts_min; |
| 36 | + int32_t experts_max; |
| 37 | + bool dynamic_scale; |
| 38 | + bool blockwise_quantization; |
| 39 | + int32_t block_size; |
| 40 | +}; |
| 41 | + |
| 42 | +std::shared_ptr<ns_MoeKernel::ParamsV2> FillMixtureOfExpertsParams( |
| 43 | + const FusedMoEConfig& config) { |
| 44 | + auto moe_params = std::make_shared<ns_MoeKernel::ParamsV2>(); |
| 45 | + memset(reinterpret_cast<void*>(moe_params.get()), |
| 46 | + 0x00, |
| 47 | + sizeof(ns_MoeKernel::ParamsV2)); |
| 48 | + |
| 49 | + auto activationIterator = activationModeMap.find(config.activation_mode); |
| 50 | + moe_params->experts.activation = activationIterator->second; |
| 51 | + |
| 52 | + moe_params->router.experts_min = config.experts_min; |
| 53 | + moe_params->router.experts_max = config.experts_max; |
| 54 | + |
| 55 | + moe_params->flags = |
| 56 | + config.permuted_weights ? MoeFlags_t::MOE_FLAGS_PERMUTED_WEIGHTS : 0; |
| 57 | + moe_params->flags |= |
| 58 | + (config.fused_gemm ? MoeFlags_t::MOE_FLAGS_FUSED_GEMM : 0); |
| 59 | + moe_params->flags |= |
| 60 | + (config.measurement_mode ? MoeFlags_t::MOE_FLAGS_CALC_AMAX : 0); |
| 61 | + |
| 62 | + return moe_params; |
| 63 | +} |
| 64 | + |
| 65 | +class FusedMixtureOfExperts : public HpuFusedOperator { |
| 66 | + public: |
| 67 | + explicit FusedMixtureOfExperts(synDataType dtype) |
| 68 | + : HpuFusedOperator("moe_", false), dtype_(dtype) {} |
| 69 | + |
| 70 | + template <typename T> |
| 71 | + void AddNodeMoeForward(std::vector<synTensor> inputs, |
| 72 | + std::vector<synTensor> outputs, |
| 73 | + std::shared_ptr<ns_MoeKernel::ParamsV2> params) { |
| 74 | + std::string node_name = "moe_fwd"; |
| 75 | + |
| 76 | + std::string guid = guid_ + guid_dtype<T>(); |
| 77 | + |
| 78 | + AddNode_IOP<ns_MoeKernel::ParamsV2>( |
| 79 | + inputs, outputs, *params, guid, node_name); |
| 80 | + } |
| 81 | + |
| 82 | + template <typename T> |
| 83 | + void AddNode(ConvertTensors* ct, FusedMoEConfig config) { |
| 84 | + auto weights_per_expert = config.fused_gemm ? 2 : 3; |
| 85 | + std::vector<synTensor> inputs; |
| 86 | + |
| 87 | + int64_t input_count = 3 + config.num_experts * weights_per_expert; |
| 88 | + for (int64_t i = 0; i < input_count; i++) { |
| 89 | + inputs.push_back(createTensorFromCT(ct, i)); |
| 90 | + } |
| 91 | + |
| 92 | + const bool measurement_mode = config.measurement_mode; |
| 93 | + std::vector<synTensor> outputs; |
| 94 | + if (measurement_mode) { |
| 95 | + for (size_t i = 0; i < 2; i++) { |
| 96 | + outputs.push_back(createTensorFromCT(ct, i, false)); |
| 97 | + } |
| 98 | + } else { |
| 99 | + outputs.push_back(createTensorFromCT(ct, 0, false)); |
| 100 | + } |
| 101 | + |
| 102 | + auto params = FillMixtureOfExpertsParams(config); |
| 103 | + AddNodeMoeForward<T>(inputs, outputs, params); |
| 104 | + } |
| 105 | + |
| 106 | + protected: |
| 107 | + synDataType dtype_; |
| 108 | +}; |
| 109 | + |
| 110 | +template <typename T, typename Context> |
| 111 | +void FusedMoEKernel(const Context& dev_ctx, |
| 112 | + const phi::DenseTensor& hidden_states, |
| 113 | + const phi::DenseTensor& expert_routing_table, |
| 114 | + const phi::DenseTensor& router_weights, |
| 115 | + const std::vector<phi::DenseTensor>& gate_up_weights, |
| 116 | + const std::vector<phi::DenseTensor>& down_weights, |
| 117 | + const bool permuted_weights, |
| 118 | + const std::string& activation, |
| 119 | + const int experts_min, |
| 120 | + const int experts_max, |
| 121 | + const bool measurement_mode, |
| 122 | + phi::DenseTensor* final_hidden_states, |
| 123 | + phi::DenseTensor* amax_per_expert) { |
| 124 | + ConvertTensors ct; |
| 125 | + ct.Add(hidden_states); |
| 126 | + ct.Add(expert_routing_table); |
| 127 | + ct.Add(router_weights); |
| 128 | + for (const auto& t : gate_up_weights) { |
| 129 | + ct.Add(t); |
| 130 | + } |
| 131 | + for (const auto& t : down_weights) { |
| 132 | + ct.Add(t); |
| 133 | + } |
| 134 | + std::vector<DIMS> inputs_dims = ct.GetDims(); |
| 135 | + |
| 136 | + ct.Add(final_hidden_states, false); |
| 137 | + ct.Add(amax_per_expert, false); |
| 138 | + |
| 139 | + OpCacheOperator op_info; |
| 140 | + op_info.prepareOpInfo<T, nullptr_t>("fused_moe_", inputs_dims, nullptr); |
| 141 | + auto recipe = op_info.GetRecipe(); |
| 142 | + |
| 143 | + if (recipe == nullptr) { |
| 144 | + FusedMoEConfig config; |
| 145 | + memset(reinterpret_cast<void*>(&config), 0x00, sizeof(FusedMoEConfig)); |
| 146 | + |
| 147 | + config.permuted_weights = permuted_weights; |
| 148 | + config.fused_gemm = (gate_up_weights.size() == down_weights.size()); |
| 149 | + config.measurement_mode = measurement_mode; |
| 150 | + config.activation_mode = activation; |
| 151 | + config.experts_min = experts_min; |
| 152 | + config.experts_max = experts_max; |
| 153 | + config.num_experts = router_weights.dims()[1]; |
| 154 | + |
| 155 | + FusedMixtureOfExperts op(op_info.datatype_); |
| 156 | + op.AddNode<T>(&ct, config); |
| 157 | + op.Compile(); |
| 158 | + op_info.setOp(op); |
| 159 | + |
| 160 | + recipe = op_info.GetRecipe(); |
| 161 | + } |
| 162 | + |
| 163 | + std::map<std::string, uint64_t> tensors = ct.GetDeviceAddr(); |
| 164 | + RecipeRunner runner(recipe); |
| 165 | + runner.Run(reinterpret_cast<C_Stream>(dev_ctx.stream()), tensors); |
| 166 | +} |
| 167 | + |
| 168 | +} // namespace custom_kernel |
| 169 | + |
| 170 | +template <typename Context> |
| 171 | +void CallFusedMoEKernel(const Context& dev_ctx, |
| 172 | + const phi::DenseTensor& hidden_states, |
| 173 | + const phi::DenseTensor& expert_routing_table, |
| 174 | + const phi::DenseTensor& router_weights, |
| 175 | + const std::vector<phi::DenseTensor>& gate_up_weights, |
| 176 | + const std::vector<phi::DenseTensor>& down_weights, |
| 177 | + const bool permuted_weights, |
| 178 | + const std::string& activation, |
| 179 | + const int experts_min, |
| 180 | + const int experts_max, |
| 181 | + const bool measurement_mode, |
| 182 | + phi::DenseTensor* final_hidden_states, |
| 183 | + phi::DenseTensor* amax_per_expert) { |
| 184 | + if (hidden_states.dtype() == phi::DataType::FLOAT16) { |
| 185 | + custom_kernel::FusedMoEKernel<phi::dtype::float16>(dev_ctx, |
| 186 | + hidden_states, |
| 187 | + expert_routing_table, |
| 188 | + router_weights, |
| 189 | + gate_up_weights, |
| 190 | + down_weights, |
| 191 | + permuted_weights, |
| 192 | + activation, |
| 193 | + experts_min, |
| 194 | + experts_max, |
| 195 | + measurement_mode, |
| 196 | + final_hidden_states, |
| 197 | + amax_per_expert); |
| 198 | + } else if (hidden_states.dtype() == phi::DataType::BFLOAT16) { |
| 199 | + custom_kernel::FusedMoEKernel<phi::dtype::bfloat16>(dev_ctx, |
| 200 | + hidden_states, |
| 201 | + expert_routing_table, |
| 202 | + router_weights, |
| 203 | + gate_up_weights, |
| 204 | + down_weights, |
| 205 | + permuted_weights, |
| 206 | + activation, |
| 207 | + experts_min, |
| 208 | + experts_max, |
| 209 | + measurement_mode, |
| 210 | + final_hidden_states, |
| 211 | + amax_per_expert); |
| 212 | + } else { |
| 213 | + throw std::runtime_error("Unsupported data type for FusedMoEKernel"); |
| 214 | + } |
| 215 | +} |
| 216 | + |
| 217 | +std::vector<paddle::Tensor> MixtureOfExpertsForward( |
| 218 | + const paddle::Tensor& hidden_states, |
| 219 | + const paddle::Tensor& expert_routing_table, |
| 220 | + const paddle::Tensor& router_weights, |
| 221 | + const std::vector<paddle::Tensor>& gate_up_weights, |
| 222 | + const std::vector<paddle::Tensor>& down_weights, |
| 223 | + const bool permuted_weights, |
| 224 | + const std::string& activation, |
| 225 | + const int experts_min, |
| 226 | + const int experts_max, |
| 227 | + const bool measurement_mode) { |
| 228 | + auto dev_ctx = static_cast<const phi::CustomContext*>( |
| 229 | + paddle::experimental::DeviceContextPool::Instance().Get( |
| 230 | + hidden_states.place())); |
| 231 | + auto hidden_states_tensor = |
| 232 | + static_cast<const phi::DenseTensor*>(hidden_states.impl().get()); |
| 233 | + auto expert_routing_table_tensor = |
| 234 | + static_cast<const phi::DenseTensor*>(expert_routing_table.impl().get()); |
| 235 | + auto router_weights_tensor = |
| 236 | + static_cast<const phi::DenseTensor*>(router_weights.impl().get()); |
| 237 | + |
| 238 | + std::vector<phi::DenseTensor> gate_up_weights_vec; |
| 239 | + for (const auto& t : gate_up_weights) { |
| 240 | + gate_up_weights_vec.push_back( |
| 241 | + *static_cast<const phi::DenseTensor*>(t.impl().get())); |
| 242 | + } |
| 243 | + std::vector<phi::DenseTensor> down_weights_vec; |
| 244 | + for (const auto& t : down_weights) { |
| 245 | + down_weights_vec.push_back( |
| 246 | + *static_cast<const phi::DenseTensor*>(t.impl().get())); |
| 247 | + } |
| 248 | + |
| 249 | + // allocate memory on device. |
| 250 | + int64_t num_tokens = hidden_states.dims()[0]; |
| 251 | + int64_t hidden_dims = hidden_states.dims()[1]; |
| 252 | + int64_t num_experts = router_weights.dims()[1]; |
| 253 | + |
| 254 | + std::shared_ptr<phi::DenseTensor> final_hidden_states = |
| 255 | + std::make_shared<phi::DenseTensor>(); |
| 256 | + final_hidden_states->Resize(phi::make_ddim({num_tokens, hidden_dims})); |
| 257 | + dev_ctx->Alloc(final_hidden_states.get(), hidden_states.dtype()); |
| 258 | + |
| 259 | + std::shared_ptr<phi::DenseTensor> amax_per_expert = |
| 260 | + std::make_shared<phi::DenseTensor>(); |
| 261 | + amax_per_expert->Resize(phi::make_ddim({num_experts})); |
| 262 | + dev_ctx->Alloc(amax_per_expert.get(), paddle::DataType::FLOAT32); |
| 263 | + |
| 264 | + CallFusedMoEKernel(*dev_ctx, |
| 265 | + *hidden_states_tensor, |
| 266 | + *expert_routing_table_tensor, |
| 267 | + *router_weights_tensor, |
| 268 | + gate_up_weights_vec, |
| 269 | + down_weights_vec, |
| 270 | + permuted_weights, |
| 271 | + activation, |
| 272 | + experts_min, |
| 273 | + experts_max, |
| 274 | + measurement_mode, |
| 275 | + final_hidden_states.get(), |
| 276 | + amax_per_expert.get()); |
| 277 | + |
| 278 | + return {paddle::Tensor(final_hidden_states), paddle::Tensor(amax_per_expert)}; |
| 279 | +} |
| 280 | + |
| 281 | +std::vector<std::vector<int64_t>> MixtureOfExpertsInferShape( |
| 282 | + const std::vector<int64_t>& hidden_states_shape, |
| 283 | + const std::vector<int64_t>& expert_routing_table_shape, |
| 284 | + const std::vector<int64_t>& router_weights_shape, |
| 285 | + const std::vector<int64_t>& gate_up_weights_shape, |
| 286 | + const std::vector<int64_t>& down_weights_shape) { |
| 287 | + int64_t num_tokens = hidden_states_shape[0]; |
| 288 | + int64_t hidden_dims = hidden_states_shape[1]; |
| 289 | + int64_t num_experts = router_weights_shape[1]; |
| 290 | + return {{num_tokens, hidden_dims}, {num_experts}}; |
| 291 | +} |
| 292 | + |
| 293 | +std::vector<paddle::DataType> MixtureOfExpertsInferDtype( |
| 294 | + const paddle::DataType& hidden_states_dtype, |
| 295 | + const paddle::DataType& expert_routing_table_dtype, |
| 296 | + const paddle::DataType& router_weights_dtype, |
| 297 | + const paddle::DataType& gate_up_weights_dtype, |
| 298 | + const paddle::DataType& down_weights_dtype) { |
| 299 | + return {hidden_states_dtype, paddle::DataType::FLOAT32}; |
| 300 | +} |
| 301 | + |
| 302 | +PD_BUILD_OP(mixture_of_experts) |
| 303 | + .Inputs({"hidden_states", |
| 304 | + "expert_routing_table", |
| 305 | + "router_weights", |
| 306 | + paddle::Vec("gate_up_weights"), |
| 307 | + paddle::Vec("down_weights")}) |
| 308 | + .Outputs({"final_hidden_states", paddle::Optional("amax_per_expert")}) |
| 309 | + .Attrs({"permuted_weights: bool", |
| 310 | + "activation: std::string", |
| 311 | + "experts_min: int", |
| 312 | + "experts_max: int", |
| 313 | + "measurement_mode: bool"}) |
| 314 | + .SetKernelFn(PD_KERNEL(MixtureOfExpertsForward)) |
| 315 | + .SetInferShapeFn(PD_INFER_SHAPE(MixtureOfExpertsInferShape)) |
| 316 | + .SetInferDtypeFn(PD_INFER_DTYPE(MixtureOfExpertsInferDtype)); |
0 commit comments