-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodel.py
138 lines (110 loc) · 4.96 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Input
from tensorflow.keras.layers import Activation
from tensorflow.keras.layers import MaxPooling2D
from tensorflow.keras.layers import Add
from tensorflow.keras import Sequential
from tensorflow.keras import Model
from tensorflow.keras.regularizers import l2
from tensorflow.keras.initializers import Constant
from resnet import ResNet18
from layer import _conv2d
from layer import _batchnorm
from layer import _dense
MODEL_DICT = {
'resnet18' : ResNet18,
'resnet50' : tf.keras.applications.ResNet50,}
FAMILY_DICT = {
'resnet18' : tf.python.keras.applications.resnet,
'resnet50' : tf.python.keras.applications.resnet,}
def set_lincls(args, backbone):
DEFAULT_ARGS = {
"use_bias": args.use_bias,
"kernel_regularizer": l2(args.weight_decay)}
if args.freeze:
backbone.trainable = False
x = backbone.get_layer(name='avg_pool').output
x = _dense(**DEFAULT_ARGS)(args.classes, name='predictions')(x)
model = Model(backbone.input, x, name='lincls')
return model
class SimSiam(Model):
def __init__(self, args, logger, num_workers=1, **kwargs):
super(SimSiam, self).__init__(**kwargs)
self.args = args
self._num_workers = num_workers
norm = 'bn' if self._num_workers == 1 else 'syncbn'
DEFAULT_ARGS = {
"use_bias": self.args.use_bias,
"kernel_regularizer": l2(self.args.weight_decay)}
FAMILY_DICT[self.args.backbone].Conv2D = _conv2d(**DEFAULT_ARGS)
FAMILY_DICT[self.args.backbone].BatchNormalization = _batchnorm(norm=norm)
FAMILY_DICT[self.args.backbone].Dense = _dense(**DEFAULT_ARGS)
DEFAULT_ARGS.update({'norm': norm})
backbone = MODEL_DICT[self.args.backbone](
include_top=False,
weights=None,
input_shape=(self.args.img_size, self.args.img_size, 3),
pooling='avg',
**DEFAULT_ARGS if self.args.backbone == 'resnet18' else {})
DEFAULT_ARGS.pop('norm')
x = backbone.output
outputs = []
# Projection MLP
num_mlp = 3 if self.args.dataset == 'imagenet' else 2
for i in range(num_mlp-1):
x = _dense(**DEFAULT_ARGS)(self.args.proj_dim, name=f'proj_fc{i+1}')(x)
if self.args.proj_bn_hidden:
x = _batchnorm(norm=norm)(epsilon=1.001e-5, name=f'proj_bn{i+1}')(x)
x = Activation('relu', name=f'proj_relu{i+1}')(x)
x = _dense(**DEFAULT_ARGS)(self.args.proj_dim, name='proj_fc3')(x)
if self.args.proj_bn_output:
x = _batchnorm(norm=norm)(epsilon=1.001e-5, name='proj_bn3')(x)
outputs.append(x)
# Prediction MLP
x = _dense(**DEFAULT_ARGS)(self.args.pred_dim, name='pred_fc1')(x)
if self.args.pred_bn_hidden:
x = _batchnorm(norm=norm)(epsilon=1.001e-5, name='pred_bn1')(x)
x = Activation('relu', name='pred_relu1')(x)
x = _dense(**DEFAULT_ARGS)(self.args.proj_dim, name='pred_fc2')(x)
if self.args.pred_bn_output:
x = _batchnorm(norm=norm)(epsilon=1.001e-5, name='pred_bn2')(x)
outputs.append(x)
self.encoder = Model(backbone.input, outputs, name='encoder')
# Load checkpoints
if self.args.snapshot and self.args.task == "pretext":
self.load_weights(self.args.snapshot)
logger.info('Load weights at {}'.format(self.args.snapshot))
def compile(
self,
optimizer,
loss,
run_eagerly=None):
super(SimSiam, self).compile(
optimizer=optimizer, run_eagerly=run_eagerly)
self._loss = loss
def train_step(self, data):
img1, img2 = data
with tf.GradientTape() as tape:
z1, p1 = self.encoder(img1, training=True)
z2, p2 = self.encoder(img2, training=True)
if self.args.stop_gradient:
loss_simsiam = (self._loss(p1, tf.stop_gradient(z2)) + self._loss(p2, tf.stop_gradient(z1))) / 2
else:
loss_simsiam = (self._loss(p1, z2) + self._loss(p2, z1)) / 2
loss_simsiam = tf.reduce_mean(loss_simsiam)
loss_decay = sum(self.encoder.losses)
loss = loss_simsiam + loss_decay
total_loss = loss / self._num_workers
trainable_vars = self.encoder.trainable_variables
grads = tape.gradient(total_loss, trainable_vars)
self.optimizer.apply_gradients(zip(grads, trainable_vars))
proj_std = tf.reduce_mean(tf.math.reduce_std(tf.math.l2_normalize(tf.concat((z1, z2), axis=0), axis=-1), axis=0))
pred_std = tf.reduce_mean(tf.math.reduce_std(tf.math.l2_normalize(tf.concat((p1, p2), axis=0), axis=-1), axis=0))
results = {
'loss': loss,
'loss_simsiam': loss_simsiam,
'weight_decay': loss_decay,
'proj_std': proj_std,
'pred_std': pred_std}
return results