-
Notifications
You must be signed in to change notification settings - Fork 0
/
similarity.py
58 lines (47 loc) · 1.84 KB
/
similarity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# coding=utf-8
# Copyright 2018-2023 EvaDB
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pandas as pd
from evadb.udfs.abstract.abstract_udf import AbstractUDF
from evadb.utils.generic_utils import try_to_import_faiss
class Similarity(AbstractUDF):
def _get_distance(self, numpy_distance):
return numpy_distance[0][0]
def setup(self):
try_to_import_faiss()
pass
@property
def name(self):
return "Similarity"
def forward(self, df: pd.DataFrame) -> pd.DataFrame:
"""
Get similarity score between two feature vectors: 1. feature vector of an opened image;
and 2. feature vector from base table.
"""
def _similarity(row: pd.Series) -> float:
open_feat_np, base_feat_np = (
row.iloc[0],
row.iloc[1],
)
# TODO: currently system takes care of feature vector shape
# transformation. Improve this later on.
# Transform to 2D.
open_feat_np = open_feat_np.reshape(1, -1)
base_feat_np = base_feat_np.reshape(1, -1)
import faiss
distance_np = faiss.pairwise_distances(open_feat_np, base_feat_np)
return self._get_distance(distance_np)
ret = pd.DataFrame()
ret["distance"] = df.apply(_similarity, axis=1)
return ret