Skip to content

Commit 256a36f

Browse files
Update README.md
1 parent 5bc9ecc commit 256a36f

File tree

1 file changed

+69
-18
lines changed

1 file changed

+69
-18
lines changed

README.md

+69-18
Original file line numberDiff line numberDiff line change
@@ -1,41 +1,92 @@
1-
# NLP-Disaster-Tweets
1+
# NLPrescue: Intelligent Disaster Tweet Analysis System
22

3-
Predict which Tweets are about real disasters and which ones are not
3+
A machine learning project that uses Natural Language Processing (NLP) to identify and classify real disaster-related tweets from non-disaster tweets.
44

5+
## Overview
56

6-
## License
7+
TweetAlert is an intelligent system that helps emergency responders and disaster management teams quickly identify genuine disaster-related social media content. Using advanced machine learning techniques, it differentiates between tweets about actual emergencies (e.g., "Forest fire spreading near downtown!") and non-emergency tweets using similar language (e.g., "This new album is fire!").
78

8-
[MIT](https://choosealicense.com/licenses/mit/)
9+
## Project Structure
910

11+
```
12+
.
13+
├── .github/ # GitHub Actions workflows
14+
├── ML/ # Core ML implementation
15+
│ ├── data/ # Training and test datasets
16+
│ ├── dataset/ # Data loading and processing
17+
│ ├── helper_functions/# Utility functions
18+
│ ├── modelling/ # Model implementations
19+
│ └── predictions/ # Model outputs
20+
├── tests/ # Test suite
21+
└── wandb/ # Weights & Biases logging
22+
```
1023

11-
## Documentation
24+
## Features
1225

13-
[Documentation]([https://linktodocumentation](https://www.kaggle.com/competitions/nlp-getting-started/data?select=train.csv))
26+
- Binary classification of tweets (disaster vs non-disaster)
27+
- PyTorch-based implementation
28+
- Multiple model architectures
29+
- Weights & Biases integration for experiment tracking
30+
- Comprehensive test coverage
31+
- GPU acceleration support
1432

33+
## Requirements
1534

16-
## Run Locally
35+
- Python 3.7+
36+
- PyTorch
37+
- torchvision
38+
- torchtext
39+
- pandas
40+
- numpy
41+
- scikit-learn
42+
- wandb
43+
- matplotlib
44+
- tqdm
1745

18-
Clone the project
46+
## Installation
47+
48+
1. Clone the repository
1949

2050
```bash
21-
git clone https://link-to-project
51+
git clone https://github.com/Programmer-RD-AI/NLP-Disaster-Tweets.git
2252
```
2353

24-
Go to the project directory
54+
2. Install dependencies
2555

2656
```bash
27-
cd my-project
57+
pip install -r requirements.txt
2858
```
2959

30-
Install dependencies
60+
## Usage
3161

32-
```bash
33-
npm install
62+
To train the model:
63+
64+
```
65+
python run.py
3466
```
3567

36-
Start the server
68+
Monitor training progress in the Weights & Biases dashboard.
3769

38-
```bash
39-
npm run start
40-
```
70+
## Dataset
71+
72+
The project uses two main datasets:
73+
74+
- train.csv: Labeled tweets for training
75+
- test.csv: Unlabeled tweets for prediction
76+
77+
Labels:
78+
79+
- 1: Real disaster
80+
- 0: Not a real disaster
81+
82+
## Contributing
83+
84+
1. Fork the repository
85+
2. Create a feature branch
86+
3. Commit changes
87+
4. Push to the branch
88+
5. Open a pull request
89+
90+
## License
4191

92+
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.

0 commit comments

Comments
 (0)