|
48 | 48 | X_test = table([10 1])
|
49 | 49 |
|
50 | 50 | model = KMeans(algo = :Lloyd, k=2)
|
51 |
| - results = fit(model, 0, X) |
| 51 | + results, cache, report = fit(model, 0, X) |
52 | 52 |
|
53 |
| - @test results[2] == nothing |
54 |
| - @test results[end].converged == true |
55 |
| - @test results[end].totalcost == 16 |
| 53 | + @test cache == nothing |
| 54 | + @test report.converged == true |
| 55 | + @test report.totalcost == 16 |
56 | 56 |
|
57 | 57 | params = fitted_params(model, results)
|
58 |
| - @test params.converged == true |
59 |
| - @test params.totalcost == 16 |
| 58 | + @test params.cluster_centers == [1.0 10.0; 2.0 2.0] |
60 | 59 |
|
61 | 60 | # Use trained model to cluster new data X_test
|
62 | 61 | preds = transform(model, results, X_test)
|
63 |
| - @test preds[:x1][1] == 2 |
| 62 | + @test preds[:x1][1] == 82.0 |
| 63 | + @test preds[:x2][1] == 1.0 |
| 64 | + |
| 65 | + # Make predictions on new data X_test with fitted params |
| 66 | + yhat = predict(model, results, X_test) |
| 67 | + @test yhat[1] == 2 |
64 | 68 | end
|
65 | 69 |
|
66 | 70 |
|
|
69 | 73 | X = table([1 2; 1 4; 1 0; 10 2; 10 4; 10 0])
|
70 | 74 | X_test = table([10 1])
|
71 | 75 |
|
72 |
| - model = KMeans(algo=:Hamerly, k=2) |
73 |
| - results = fit(model, 0, X) |
| 76 | + model = KMeans(algo = :Hamerly, k=2) |
| 77 | + results, cache, report = fit(model, 0, X) |
74 | 78 |
|
75 |
| - @test results[2] == nothing |
76 |
| - @test results[end].converged == true |
77 |
| - @test results[end].totalcost == 16 |
| 79 | + @test cache == nothing |
| 80 | + @test report.converged == true |
| 81 | + @test report.totalcost == 16 |
78 | 82 |
|
79 | 83 | params = fitted_params(model, results)
|
80 |
| - @test params.converged == true |
81 |
| - @test params.totalcost == 16 |
| 84 | + @test params.cluster_centers == [1.0 10.0; 2.0 2.0] |
82 | 85 |
|
83 | 86 | # Use trained model to cluster new data X_test
|
84 | 87 | preds = transform(model, results, X_test)
|
85 |
| - @test preds[:x1][1] == 2 |
| 88 | + @test preds[:x1][1] == 82.0 |
| 89 | + @test preds[:x2][1] == 1.0 |
| 90 | + |
| 91 | + # Make predictions on new data X_test with fitted params |
| 92 | + yhat = predict(model, results, X_test) |
| 93 | + @test yhat[1] == 2 |
86 | 94 | end
|
87 | 95 |
|
88 | 96 |
|
|
91 | 99 | X = table([1 2; 1 4; 1 0; 10 2; 10 4; 10 0])
|
92 | 100 | X_test = table([10 1])
|
93 | 101 |
|
94 |
| - model = KMeans(algo=:Elkan, k=2) |
95 |
| - results = fit(model, 0, X) |
| 102 | + model = KMeans(algo = :Elkan, k=2) |
| 103 | + results, cache, report = fit(model, 0, X) |
96 | 104 |
|
97 |
| - @test results[2] == nothing |
98 |
| - @test results[end].converged == true |
99 |
| - @test results[end].totalcost == 16 |
| 105 | + @test cache == nothing |
| 106 | + @test report.converged == true |
| 107 | + @test report.totalcost == 16 |
100 | 108 |
|
101 | 109 | params = fitted_params(model, results)
|
102 |
| - @test params.converged == true |
103 |
| - @test params.totalcost == 16 |
| 110 | + @test params.cluster_centers == [1.0 10.0; 2.0 2.0] |
104 | 111 |
|
105 | 112 | # Use trained model to cluster new data X_test
|
106 | 113 | preds = transform(model, results, X_test)
|
107 |
| - @test preds[:x1][1] == 2 |
| 114 | + @test preds[:x1][1] == 82.0 |
| 115 | + @test preds[:x2][1] == 1.0 |
| 116 | + |
| 117 | + # Make predictions on new data X_test with fitted params |
| 118 | + yhat = predict(model, results, X_test) |
| 119 | + @test yhat[1] == 2 |
108 | 120 | end
|
109 | 121 |
|
110 | 122 |
|
|
114 | 126 | X_test = table([10 1])
|
115 | 127 |
|
116 | 128 | model = KMeans(k=2, max_iters=1)
|
117 |
| - results = fit(model, 0, X) |
| 129 | + results, cache, report = fit(model, 0, X) |
118 | 130 |
|
119 | 131 | @test_logs (:warn, "Failed to converge. Using last assignments to make transformations.") transform(model, results, X_test)
|
120 | 132 | end
|
|
0 commit comments