-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCS3243_P2_Sudoku_XX.py
213 lines (176 loc) · 7.27 KB
/
CS3243_P2_Sudoku_XX.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# CS3243 Introduction to Artificial Intelligence
# Project 2, Part 1: Sudoku
import sys
import copy
from collections import deque
# Running script: given code can be run with the command:
# python file.py, ./path/to/init_state.txt ./output/output.txt
class Sudoku(object):
def __init__(self, puzzle):
# you may add more attributes if you need
self.puzzle = puzzle # self.puzzle is a list of lists
self.ans = copy.deepcopy(puzzle) # self.ans is a list of lists
self.csp = CSP(puzzle)
def solve(self):
self.AC3(self.csp)
assignment = self.backtrackingSearch(self.csp)
if not assignment:
return False
for (i, j) in assignment:
self.ans[i][j] = assignment[(i, j)]
# self.ans is a list of lists
return self.ans
# you may add more classes/functions if you think is useful
# However, ensure all the classes/functions are in this file ONLY
# Note that our evaluation scripts only call the solve method.
# Any other methods that you write should be used within the solve() method.
def AC3(self, csp):
arc_q = deque()
for cons in csp.constraints:
arc_q.append(cons)
while arc_q:
(xi, xj) = arc_q.popleft()
if self.revise(csp, xi, xj):
if not xi.domain:
return False
for xk in xi.neighbour:
if xk != xj:
arc_q.append((xk, xi))
return True
def revise(self, csp, xi, xj):
revised = False
for x in xi.domain:
if all(map(lambda y : csp.constraints[(xi, xj)](x, y), xj.domain)):
xi.domain.remove(x)
return revised
def backtrackingSearch(self, csp):
return self.backtrack(csp)
def backtrack(self, csp, assignment = dict()):
if self.complete(assignment):
return assignment
var = self.selectUnassignedVariable(csp, assignment)
for value in self.orderDomainValue(var, assignment, csp):
if self.isConsistent(value, assignment, csp):
assignment[var] = value
# self.printAssignment(assignment)
var.value = value
# inferences = self.inference(csp, var, value)
# if not inferences:
# add inferences to assignment
result = self.backtrack(csp, assignment)
if not result:
return result
del assignment[var]
var.value = 0
# del inferences from assignment
return False
def isConsistent(self, value, assignment, csp):
return not any(map(lambda key : csp.constraints[key](key), csp.constraints))
def complete(self, assignment):
return len(assignment) == 81
def selectUnassignedVariable(self, csp, assignment):
''' using minimum remaining values '''
# Maintain a PQ in csp might be more efficient
lst = sorted(list(filter(lambda var: var not in assignment, csp.variables)), key = lambda var : len(var.domain))
return lst[0]
def orderDomainValue(self, var, assignment, csp):
''' using least constraining values '''
# lst = sorted(list(var.domain), key = csp.variables.numConstrainingValues)
lst = list(var.domain)
return lst
def inference(self, csp, var, value):
return 0
def printAssignment(self, assignment):
for key, value in assignment.items():
print(key, value)
class CSP(object):
def __init__(self, puzzle):
self.variables = list() # set of var (tuple representing indexes)
# self.domains = dict() # key = var, value = var_domain (set)
# self.neighbour = dict() # key = var, value = var_neighbour (set)
# TODO change AC3 and backtrack
# set of binary constraints (constraint function involving two var) represented by pair(scope, relation)
# scope = (x, y), relation = f(x, y), where x, y are vars
self.constraints = dict()
self.initialiseCSP(puzzle)
for var in self.variables:
print(var.coordinate, var.value)
# self.currDomains = None
return
# def allowsPruning(self):
# ''' Create a copy of domains as currDomains '''
# self.currDomains = dict()
# for var in self.domains:
# self.currDomains[var] = self.domains[var]
# return
def initialiseCSP(self, puzzle):
# going through 2d list
for i in range(9):
for j in range(9):
self.variables.append(Variable((i,j), puzzle[i][j]))
# going through var set
for var1 in self.variables:
# self.domains[var1] = {1, 2, 3, 4, 5, 6, 7, 8, 9} if not var1.value else {var1.value}
# self.neighbour[var1] = set()
for var2 in self.variables:
if var1 != var2 and var1.isSameUnit(var2):
# self.constraints[(var1, var2)] = self.conflict
# self.neighbour[var1].add(var2)
var1.neighbour.add(var2)
return
def conflict(self, var1, var2):
''' var1 and var2 are in conflict when they having same value,
only comparing vars in same unit (represent by arc) '''
return var1 == var2
class Variable(object):
def __init__(self, coordinate, value):
self.coordinate = coordinate # (x, y)
self.value = value
self.domain = {1, 2, 3, 4, 5, 6, 7, 8, 9} if not value else {value}
self.neighbour = set()
self.degree = len(self.neighbour)
return
def __hash__(self):
return hash(self.coordinate)
def __eq__(self, var):
return self.coordinate == var.coordinate
def __str__(self):
return str(self.coordinate)
def isSameUnit(self, var):
return self.isSameRow(var) or self.isSameCol(var) or self.isSameSquare(var)
def isSameRow(self, var):
return self.coordinate[0] == var.coordinate[0]
def isSameCol(self, var):
return self.coordinate[1] == var.coordinate[1]
def isSameSquare(self, var):
''' square refers to 3*3 square '''
return (self.coordinate[0]//3, self.coordinate[1]//3) == (var.coordinate[0]//3, var.coordinate[1]//3)
if __name__ == "__main__":
# STRICTLY do NOT modify the code in the main function here
if len(sys.argv) != 3:
print ("\nUsage: python CS3243_P2_Sudoku_XX.py input.txt output.txt\n")
raise ValueError("Wrong number of arguments!")
try:
f = open(sys.argv[1], 'r')
except IOError:
print ("\nUsage: python CS3243_P2_Sudoku_XX.py input.txt output.txt\n")
raise IOError("Input file not found!")
puzzle = [[0 for i in range(9)] for j in range(9)]
lines = f.readlines()
i, j = 0, 0
for line in lines:
for number in line:
if '0' <= number <= '9':
puzzle[i][j] = int(number)
j += 1
if j == 9:
i += 1
j = 0
sudoku = Sudoku(puzzle)
ans = sudoku.solve()
print(ans)
with open(sys.argv[2], 'a') as f:
for i in range(9):
for j in range(9):
f.write(str(ans[i][j]) + " ")
f.write("\n")