-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCS3243_P2_Sudoku_v2.py
271 lines (228 loc) · 9.31 KB
/
CS3243_P2_Sudoku_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# CS3243 Introduction to Artificial Intelligence
# Project 2, Part 1: Sudoku
import sys
import copy
from collections import deque
# Running script: given code can be run with the command:
# python file.py, ./path/to/init_state.txt ./output/output.txt
class Sudoku(object):
def __init__(self, puzzle):
# you may add more attributes if you need
self.puzzle = puzzle # self.puzzle is a list of lists
self.ans = copy.deepcopy(puzzle) # self.ans is a list of lists
self.csp = CSP(puzzle)
def solve(self):
# print("BEFORE")
# self.printKeyVal(self.csp.domains)
self.AC3(self.csp)
# print("AFTER")
# self.printKeyVal(self.csp.currDomains)
assignment = self.backtrackingSearch(self.csp)
if not assignment:
return False
for (i, j) in assignment:
self.ans[i][j] = assignment[(i, j)]
# self.ans is a list of lists
return self.ans
# you may add more classes/functions if you think is useful
# However, ensure all the classes/functions are in this file ONLY
# Note that our evaluation scripts only call the solve method.
# Any other methods that you write should be used within the solve() method.
def AC3(self, csp):
arc_q = deque()
for cons in csp.constraints:
arc_q.append(cons)
csp.regenerateCurrDomains()
while arc_q:
(xi, xj) = arc_q.popleft()
if self.revise(csp, xi, xj):
if not csp.currDomains[xi]:
return False
for xk in csp.neighbours[xi]:
if xk != xj:
arc_q.append((xk, xi))
return True
def revise(self, csp, xi, xj):
revised = False
# print(xi, xj)
for x in csp.currDomains[xi].copy():
if all(map(lambda y : csp.constraints[(xi, xj)](x, y), csp.currDomains[xj])):
csp.currDomains[xi].remove(x)
return revised
def backtrackingSearch(self, csp):
return self.backtrack(csp)
def backtrack(self, csp, assignment = dict()):
# self.printAssignment(assignment)
# print("\n")
# self.writeAssignment(assignment)
if self.complete(assignment):
return assignment
var = self.selectUnassignedVariable(csp, assignment)
for value in self.orderDomainValue(var, assignment, csp):
if self.isConsistent(var, value, assignment):
assignment[var] = value
var.value = value
removals = csp.updateCurrDomains(var, value)
# inferences = self.inference(csp, var, value)
# if not inferences:
# add inferences to assignment
result = self.backtrack(csp, assignment)
if result:
return result
csp.restoreCurrDomain(var, removals)
# print(var)
# print(csp.currDomains[var])
# self.writeLine(var.coordinate)
# self.writeLine(csp.currDomains[var])
# self.printAssignment(assignment)
# print("\n")
if var in assignment:
del assignment[var]
var.value = 0
# del inferences from assignment
return False
def isConsistent(self, var1, value, assignment):
return not any(map(lambda var2 : var1.isSameUnit(var2) and assignment[var2] == value, assignment))
def complete(self, assignment):
return len(assignment) == 81
def selectUnassignedVariable(self, csp, assignment):
''' using minimum remaining values '''
# Maintain a PQ in csp might be more efficient
lst = sorted(list(filter(lambda var: var not in assignment, csp.variables)), key = lambda var : len(csp.currDomains[var]))
return lst[0]
def orderDomainValue(self, var, assignment, csp):
''' using least constraining values '''
# lst = sorted(list(var.domain), key = csp.variables.numConstrainingValues)
lst = list(csp.currDomains[var])
return lst
def inference(self, csp, var, value):
return 0
def numConflict(self, var, value, assignment):
return
def printKeyVal(self, cspAttr):
for key, value in cspAttr.items():
print(key, value)
def printAssignment(self, assignment):
lst = [[0 for i in range(9)] for j in range(9)]
for var in assignment:
lst[var.coordinate[0]][var.coordinate[1]] = assignment[var]
for line in lst:
print(line)
def writeAssignment(self, assignment):
lst = [[0 for i in range(9)] for j in range(9)]
for var in assignment:
lst[var.coordinate[1]][var.coordinate[0]] = assignment[var]
outfile.write("---------------------------\n")
for line in lst:
outfile.write(str(line))
outfile.write("\n")
def writeLine(self, item):
outfile.write(str(item))
outfile.write("\n")
class CSP(object):
def __init__(self, puzzle):
self.variables = list() # set of var (tuple representing indexes)
self.domains = dict() # key = var, value = var_domain (set)
self.neighbour = dict() # key = var, value = var_neighbour (set)
# TODO change AC3 and backtrack
# set of binary constraints (constraint function involving two var) represented by pair(scope, relation)
# scope = (x, y), relation = f(x, y), where x, y are vars
self.constraints = dict()
self.initialiseCSP(puzzle)
# for var in self.variables:
# print(var.coordinate, var.value)
self.currDomains = dict()
return
def initialiseCSP(self, puzzle):
# going through 2d list
for i in range(9):
for j in range(9):
self.variables.append(Variable((j,i), puzzle[i][j]))
# going through var set
for var1 in self.variables:
self.domains[var1] = {1, 2, 3, 4, 5, 6, 7, 8, 9} if not var1.value else {var1.value}
self.neighbour[var1] = set()
for var2 in self.variables:
if var1 != var2 and var1.isSameUnit(var2):
# print(var1, var2)
self.constraints[(var1, var2)] = self.conflict
self.neighbour[var1].add(var2)
var1.neighbour.add(var2)
# print("Constraint\n")
# for (var1, var2) in self.constraints:
# print(var1, var2)
return
def conflict(self, var1, var2):
''' var1 and var2 are in conflict when they having same value,
only comparing vars in same unit (represent by arc) '''
return var1 == var2
def regenerateCurrDomains(self):
''' Create a copy of domains as currDomains '''
# self.currDomains = dict()
if self.currDomains is None:
for var in self.variables:
self.currDomains[var] = {i for i in self.domains[var]}
return
def updateCurrDomains(self, var, value):
self.regenerateCurrDomains()
removals = list(filter(lambda val : val != value, self.currDomains[var]))
self.currDomains[var] = set([value])
return removals
def restoreCurrDomain(self, var, removals):
for r in removals:
self.currDomains[var].add(r)
return
class Variable(object):
def __init__(self, coordinate, value):
self.coordinate = coordinate # (x, y)
self.value = value
# self.domain = {1, 2, 3, 4, 5, 6, 7, 8, 9} if not value else {value}
self.neighbour = set()
self.degree = len(self.neighbour)
return
def __hash__(self):
return hash(self.coordinate)
def __eq__(self, var):
return self.coordinate == var.coordinate
def __str__(self):
return str(self.coordinate)
def isSameUnit(self, var):
return self.isSameRow(var) or self.isSameCol(var) or self.isSameSquare(var)
def isSameRow(self, var):
return self.coordinate[0] == var.coordinate[0]
def isSameCol(self, var):
return self.coordinate[1] == var.coordinate[1]
def isSameSquare(self, var):
''' square refers to 3*3 square '''
return (self.coordinate[0]//3, self.coordinate[1]//3) == (var.coordinate[0]//3, var.coordinate[1]//3)
if __name__ == "__main__":
# STRICTLY do NOT modify the code in the main function here
if len(sys.argv) != 3:
print ("\nUsage: python CS3243_P2_Sudoku_XX.py input.txt output.txt\n")
raise ValueError("Wrong number of arguments!")
try:
f = open(sys.argv[1], 'r')
except IOError:
print ("\nUsage: python CS3243_P2_Sudoku_XX.py input.txt output.txt\n")
raise IOError("Input file not found!")
puzzle = [[0 for i in range(9)] for j in range(9)]
lines = f.readlines()
i, j = 0, 0
for line in lines:
for number in line:
if '0' <= number <= '9':
puzzle[i][j] = int(number)
j += 1
if j == 9:
i += 1
j = 0
outfile = open("temp.txt", "w")
sudoku = Sudoku(puzzle)
ans = sudoku.solve()
outfile.close()
print(ans)
with open(sys.argv[2], 'a') as f:
for i in range(9):
for j in range(9):
f.write(str(ans[i][j]) + " ")
f.write("\n")