forked from KeunhoByeon/EBV-TRACER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
64 lines (52 loc) · 2.6 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import argparse
import os
import torch
from efficientnet_pytorch import EfficientNet
from tqdm import tqdm
from src import EBVGCDataset, load_checkpoint
def prepare_custom_dataset(data_dir, annotation=None):
dataset = []
for path, dir, files in os.walk(data_dir):
for filename in files:
ext = os.path.splitext(filename)[-1]
if ext not in ('.png', '.jpg', '.jpeg'):
continue
file_path = os.path.join(path, filename)
label = 0 if annotation is None else annotation[file_path]
dataset.append((file_path, label))
return dataset
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='EBV-TRACER Classification Inference')
parser.add_argument('--num_classes', default=3, type=int, help='number of classes')
parser.add_argument('--checkpoint', default="./checkpoints/net_5000.pth", type=str, help='path to latest checkpoint')
parser.add_argument('--workers', default=16, type=int, help='number of data_function loading workers')
parser.add_argument('--input_size', default=512, type=int, help='image input size')
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--data', default='', help='path to dataset')
parser.add_argument('--result_path', default="./results.csv", type=str, help='path to results')
args = parser.parse_args()
model = EfficientNet.from_name("efficientnet-b1", num_classes=3)
model = load_checkpoint(model, args.checkpoint)
if torch.cuda.is_available():
model = model.cuda()
# Dataset
test_set = prepare_custom_dataset(args.data, annotation=None)
test_dataset = EBVGCDataset(test_set, input_size=args.input_size, is_train=False)
test_loader = torch.utils.data.DataLoader(test_dataset,
batch_size=args.batch_size,
num_workers=args.workers,
pin_memory=True,
shuffle=False)
wf = open(args.result_path, 'w')
wf.write('file,pred\n')
model.eval()
with torch.no_grad():
for i, (input_paths, inputs, _) in tqdm(enumerate(test_loader), desc="Evaluating", total=len(test_loader)):
if torch.cuda.is_available():
inputs = inputs.cuda()
output = model(inputs)
preds = torch.argmax(output, dim=1)
# 0 benign, 1 EBV-GC, 2 Non-EBV-GC
for input_path, p in zip(input_paths, preds):
wf.write('{},{}\n'.format(input_path, p))
wf.close()