-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathindex_x.html
387 lines (379 loc) · 27.5 KB
/
index_x.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<!-- The above 3 meta tags *must* come first in the head; any other head content must come *after* these tags -->
<meta name="description" content="XHome page of REMEX">
<meta name="author" content="WeiQM">
<link rel="icon" href="images/logo/RMX_16.ico">
<title>REME[X] - Remote sensing + Medical imaging + [X]-features</title>
<!-- Bootstrap core CSS -->
<link rel="stylesheet" href="style/bootstrap.min.css">
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/font-awesome/4.4.0/css/font-awesome.min.css">
<!-- Custom styles for this template -->
<link href="style/jquery.bxslider.css" rel="stylesheet">
<link href="style/style.css" rel="stylesheet">
</head>
<body>
<!-- Navigation -->
<nav class="navbar navbar-inverse navbar-fixed-top">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false" aria-controls="navbar">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
</div>
<div id="navbar" class="collapse navbar-collapse">
<ul class="nav navbar-nav">
<li><a><i class="fa fa-anchor"></i></a></li>
<li class="active"><a href="index_x.html">Home</a></li>
<li><a href="people_x.html">People</a></li>
<li><a>|</a></li>
<li><a href="index.html">Back To Normal <i class="fa fa-sign-out"></i></a></li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li class="active"><a href="index_x.html">English</a></li>
<li><a href="html/cn/index_x.html">中文</a></li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li><a href="index_x.html"><img src="images/logo/logo_w.png" alt="Logo" width="80px"/></a></li>
</ul>
</div>
</div>
</nav>
<div class="container">
<header>
<!--
<a href="index.html"><img src="images/logo.png" width="256px"></a>
-->
</header>
<!--
<section class="main-slider">
<ul class="bxslider">
<li><div class="slider-item"><img src="images/logo/logo_c.png" title="Logo" /><h2><a href="" title="Loge">New published !</a></h2></div></li>
<li><div class="slider-item"><img src="images/logo/logo_m.png" title="Logo" /><h2><a href="" title="Loge">New published !</a></h2></div></li>
<li><div class="slider-item"><img src="images/logo/logo_y.png" title="Logo" /><h2><a href="" title="Loge">New published !</a></h2></div></li>
<li><div class="slider-item"><img src="images/logo/logo_k.png" title="Logo" /><h3><a href="" title="Loge">New published !</a></h3></div></li>
<li><div class="slider-item"><img src="images/logo/logo_r.png" title="Logo" /><h3><a href="" title="Loge">New published !</a></h3></div></li>
<li><div class="slider-item"><img src="images/logo/logo_g.png" title="Logo" /><h3><a href="" title="Loge">New published !</a></h3></div></li>
<li><div class="slider-item"><img src="images/logo/logo_b.png" title="Logo" /><h3><a href="" title="Loge">New published !</a></h3></div></li>
</ul>
</section>
-->
<section>
<div class="row">
<!-- Main Page -->
<div class="col-md-8">
<introduce class="content-block">
<div class="block-body">
<img src="images/logo.png" alt="Logo" width="512px">
<p><br>
<b>REMEX</b> (<b>Re</b>mote sensing and <b>Me</b>dical imaging with <b>X</b>-features) is a research group directed by Prof. Zhiguo Jiang. This group is affiliated by the Image Processing Center, School of Astronautics, Beihang University, China. The main research interests include remote sensing image processing and analysis, medical imaging and analysis, space object image processing, computer vision, pattern recognition, and deep learning, etc.
</p>
<div class="block-image">
<img src="images/photo_x/Team.jpg" alt="Team photo">
</div>
<hr/>
<h3 align="left">Recently Published</h3><br />
<div class="block-text">
<table><tbody>
<tr><td valign="top"><!-- An Paper -->
<p>
<strong style="color:red">[New]</strong>
<b>Generating Region Proposals for Histopathological Whole Slide Image Retrieval</b> <a href="http://www.sciencedirect.com/science/article/pii/S0169260717312154" target="_blank"><i class="fa fa-external-link"></i></a>
<br>
<font size="3pt" face="Georgia"><i>
Yibing Ma, Zhiguo Jiang, Haopeng Zhang, Fengying Xie, Yushan Zheng, Huaqiang Shi, Yu Zhao and Jun Shi
</i></font>
<br>
Computer Methods and Programs in Biomedicine, 2018
<br>
<i class="fa fa-bookmark-o"></i> <a href="javascript:toggleblock('maCMBP2018Abs')">Abstract</a>
<i class="fa fa-quote-left"></i> <a href="javascript:toggleblock('maCMBP2018Bib')">BibTeX</a>
</p>
<p id="maCMBP2018Abs" class="abstract" style="display: none;">
<b>Background and objective</b>
Content-based image retrieval is an effective method for histopathological image analysis. However, given a database of huge whole slide images (WSIs), acquiring appropriate region-of-interests (ROIs) for training is significant and difficult. Moreover, histopathological images can only be annotated by pathologists, resulting in the lack of labeling information. Therefore, it is an important and challenging task to generate ROIs from WSI and retrieve image with few labels.
<b>Methods</b>
This paper presents a novel unsupervised region proposing method for histopathological WSI based on Selective Search. Specifically, the WSI is over-segmented into regions which are hierarchically merged until the WSI becomes a single region. Nucleus-oriented similarity measures for region mergence and Nucleus–Cytoplasm color space for histopathological image are specially defined to generate accurate region proposals. Additionally, we propose a new semi-supervised hashing method for image retrieval. The semantic features of images are extracted with Latent Dirichlet Allocation and transformed into binary hashing codes with Supervised Hashing.
<b>Results</b>
The methods are tested on a large-scale multi-class database of breast histopathological WSIs. The results demonstrate that for one WSI, our region proposing method can generate 7.3 thousand contoured regions which fit well with 95.8% of the ROIs annotated by pathologists. The proposed hashing method can retrieve a query image among 136 thousand images in 0.29 s and reach precision of 91% with only 10% of images labeled.
<b>Conclusions</b>
The unsupervised region proposing method can generate regions as predictions of lesions in histopathological WSI. The region proposals can also serve as the training samples to train machine-learning models for image retrieval. The proposed hashing method can achieve fast and precise image retrieval with small amount of labels. Furthermore, the proposed methods can be potentially applied in online computer-aided-diagnosis systems.
</p>
<pre xml:space="preserve" id="maCMBP2018Bib" class="bibtex" style="display: none;">
@article{maCMPB2018,
title = {Generating region proposals for histopathological
whole slide image retrieval},
author = {Yibing Ma and Zhiguo Jiang and Haopeng Zhang and Fengying Xie
and Yushan Zheng and Huaqiang Shi and Yu Zhao and Jun Shi},
journal = {Computer Methods and Programs in Biomedicine},
volume = {159},
pages = {1 - 10},
year = {2018},
issn = {0169-2607},
url = {http://www.sciencedirect.com/science/article/pii/S0169260717312154},
}
</pre>
<script language="javascript" type="text/javascript" xml:space="preserve">
hideblock('maCMBP2018Abs');
hideblock('maCMBP2018Bib');
</script>
</td>
</tr> <!-- Paper End Here -->
<tr><td valign="top"><!-- An Paper -->
<p>
<strong style="color:red">[New]</strong>
<b>Robust Spacecraft Component Detection in Point Clouds</b> <a href="http://www.mdpi.com/1424-8220/18/4/933" target="_blank"><i class="fa fa-external-link"></i></a>
<br>
<font size="3pt" face="Georgia"><i>
<a href="https://weiquanmao.github.io" target="_blank">Quanmao Wei</a>, Zhiguo Jiang and Haopeng Zhang
</i></font>
<br>
Sensors, 2018
<br>
<i class="fa fa-file-pdf-o"></i> <a href="http://www.mdpi.com/1424-8220/18/4/933/pdf" target="_blank">PDF</a>
<i class="fa fa-bookmark-o"></i> <a href="javascript:toggleblock('weiSensors18Abs')">Abstract</a>
<i class="fa fa-quote-left"></i> <a href="javascript:toggleblock('weiSensors18Bib')">BibTeX</a>
<i class="fa fa-link"></i> <a href="http://www.mdpi.com/1424-8220/18/4/933/s1" target="_blank">Supplementary</a>
<i class="fa fa-code"></i> <a href="https://github.com/weiquanmao/PCF" target="_blank">Code</a>  
</p>
<p id="weiSensors18Abs" class="abstract" style="display: none;">
Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.
</p>
<pre xml:space="preserve" id="weiSensors18Bib" class="bibtex" style="display: none;">
@article{weiSensors18,
author = {Quanmao Wei and Zhiguo Jiang and Haopeng Zhang},
title = {Robust Spacecraft Component Detection in Point Clouds},
journal = {Sensors},
volume = {18},
year = {2018},
number = {4},
article number = {933},
url = {http://www.mdpi.com/1424-8220/18/4/933},
issn = {1424-8220},
doi = {10.3390/s18040933}
}
</pre>
<script language="javascript" type="text/javascript" xml:space="preserve">
hideblock('weiSensors18Abs');
hideblock('weiSensors18Bib');
</script>
</td></tr> <!-- Paper End Here -->
<tr><td valign="top"><!-- An Paper -->
<p>
<strong style="color:red">[New]</strong>
<b>Vision-based Pose Estimation for Textureless Space Objects by Contour Points Matching</b> <a href="http://ieeexplore.ieee.org/document/8315479/" target="_blank"><i class="fa fa-external-link"></i></a>
<br>
<font size="3pt" face="Georgia"><i>
Xin Zhang, Zhiguo Jiang, Haopeng Zhang and <a href="https://weiquanmao.github.io" target="_blank">Quanmao Wei</a>
</i></font>
<br>
IEEE Transactions on Aerospace and Electronic Systems, 2018
<br>
<i class="fa fa-file-pdf-o"></i> <a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8315479" target="_blank">Preprint</a>
<i class="fa fa-bookmark-o"></i> <a href="javascript:toggleblock('zhangTAES18Abs')">Abstract</a>
<i class="fa fa-quote-left"></i> <a href="javascript:toggleblock('zhangTAES18Bib')">BibTeX</a>
</p>
<p id="zhangTAES18Abs" class="abstract" style="display: none;">
This paper presents a novel vision-based method to solve the 6-degree-of-freedom pose estimation problem of textureless space objects from a single monocular image. Our approach follows a coarse-to-fine procedure, utilizing only shape and contour information of the input image. To achieve invariance to initialization, we select a series of projection images which are similar to the input image and establish many-to-one 2D-3D correspondences by contour feature matching. Intensive attention is focused on outlier rejection and we introduce an innovative strategy to fully utilize geometric matching information to guide pose calculation. Experiments based on simulated images are carried out, and the results manifest that pose estimation error of our approach is about 1% even in situations with heavy outlier correspondences.
</p>
<pre xml:space="preserve" id="zhangTAES18Bib" class="bibtex" style="display: none;">
@article{zhangTAES18,
author = {Xin Zhang and Zhiguo Jiang and Haopeng Zhang and Quanmao Wei},
journal = {IEEE Transactions on Aerospace and Electronic Systems},
title = {Vision-based Pose Estimation for Textureless Space Objects
by Contour Points Matching},
year = {2018},
month = {},
volume = {PP},
number = {99},
pages = {1—-1},
issn = {0018-9251},
doi = {10.1109/TAES.2018.2815879}
}
</pre>
<script language="javascript" type="text/javascript" xml:space="preserve">
hideblock('zhangTAES18Abs');
hideblock('zhangTAES18Bib');
</script>
</td></tr> <!-- Paper End Here -->
<tr><td> <!-- An Paper -->
<p>
<strong style="color:red">[New]</strong>
<b>Histopathological Whole Slide Image Analysis Using Context-based CBIR</b> <a href="http://ieeexplore.ieee.org/document/8265156/" target="_blank"><i class="fa fa-external-link"></i></a>
<br>
<font size="3pt" face="Georgia"><i>
Yushan Zheng, Zhiguo Jiang, Haopeng Zhang, Fengying Xie, Yibing Ma, Huaqiang Shi and Yu Zhao
</i></font>
<br>
IEEE Transactions on Medical Imaging, 2018
<br>
<i class="fa fa-file-pdf-o"></i> <a href="source/pdf/article_zheng_tmi_2018.pdf" target="_blank">PDF</a>
<i class="fa fa-bookmark-o"></i> <a href="javascript:toggleblock('zhengTMI2018Abs')">Abstract</a>
<i class="fa fa-quote-left"></i> <a href="javascript:toggleblock('zhengTMI2018Bib')">BibTeX</a>
<i class="fa fa-link"></i> <a href="source/pdf/article_zheng_tmi_2018_sup.pdf" target="_blank">Supplementary</a>
</p>
<p id="zhengTMI2018Abs" class="abstract" style="display: none;">
Histopathological image classification (HIC) and content-based histopathological image retrieval (CBHIR) are two promising applications for histopathological whole slide image (WSI) analysis. HIC can efficiently predict the type of lesion involved in a histopathological image. In general, HIC can aid pathologists in locating high-risk cancer regions from a WSI by providing a cancerous probability map for the WSI. In contrast, CBHIR was developed to allow searches for regions with similar content for a region of interest (ROI) from a database consisting of historical cases. Sets of cases with similar content are accessible to pathologists, which can provide more valuable references for diagnosis. A drawback of the recent CBHIR framework is that a query ROI needs to be manually selected from a WSI. An automatic CBHIR approach for a WSI-wise analysis needs to be developed. In this paper, we propose a novel aided-diagnosis framework of breast cancer using whole slide images, which shares the advantages of both HIC and CBHIR. In our framework, CBHIR is automatically processed throughout the WSI, based on which a probability map regarding the malignancy of breast tumors is calculated. Through the probability map, the malignant regions in WSIs can be easily recognized. Furthermore, the retrieval results corresponding to each sub-region of the WSIs are recorded during the automatic analysis and are available to pathologists during their diagnosis. Our method was validated on fully annotated WSI datasets of breast tumors. The experimental results certify the effectiveness of the proposed method.
</p>
<pre xml:space="preserve" id="zhengTMI2018Bib" class="bibtex" style="display: none;">
@article{zhengTMI18,
author = {Yushan Zheng and Zhiguo Jiang and Haopeng Zhang and Fengying Xie
and Yibing Ma and Huaqiang Shi and Yu Zhao},
title = {Histopathological Whole Slide Image Analysis Using Context-based CBIR},
journal = {IEEE Transactions on Medical Imaging},
doi = {10.1109/TMI.2018.2796130},
year = {Epub 2018 January 23}
}
</pre>
<script language="javascript" type="text/javascript" xml:space="preserve">
hideblock('zhengTMI2018Abs');
hideblock('zhengTMI2018Bib');
</script>
</td></tr> <!-- Paper End Here -->
<tr> <!-- An Paper -->
<p>
<strong style="color:red">[New]</strong>
<b>Higher Order Support Vector Random Fields for Hyperspectral Image Classification</b> <a href="http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=8&SID=6Dt9E3Uj6j9E5kXWUJC&page=1&doc=1" target="_blank"><i class="fa fa-external-link"></i></a>
<br>
<font size="3pt" face="Georgia"><i>
Junli Yang, Zhiguo Jiang, Shuang Hao and Haopeng Zhang
</i></font>
<br>
ISPRS International Journal of Geo-Information, 2018
<br>
<!--<i class="fa fa-file-pdf-o"></i> <a href="source/pdf/article_yang_ijgi_2018.pdf" target="_blank">PDF</a>
-->
<i class="fa fa-bookmark-o"></i> <a href="javascript:toggleblock('yangIJGI2018Abs')">Abstract</a>
<i class="fa fa-quote-left"></i> <a href="javascript:toggleblock('yangIJGI2018Bib')">BibTeX</a>
</p>
<p id="yangIJGI2018Abs" class="abstract" style="display: none;">
This paper addresses the problem of contextual hyperspectral image (HSI) classification. A novel conditional random fields (CRFs) model, known as higher order support vector random fields (HSVRFs), is proposed for HSI classification. By incorporating higher order potentials into a support vector random fields with a Mahalanobis distance boundary constraint (SVRFMC) model, the HSVRFs model not only takes advantage of the support vector machine (SVM) classifier and the Mahalanobis distance boundary constraint, but can also capture higher level contextual information to depict complicated details in HSI. The higher order potentials are defined on image segments, which are created by a fast unsupervised over-segmentation algorithm. The higher order potentials consider the spectral vectors of each of the segment's constituting pixels coherently, and weight these pixels with the output probability of the support vector machine (SVM) classifier in our framework. Therefore, the higher order potentials can model higher-level contextual information, which is useful for the description of challenging complex structures and boundaries in HSI. Experimental results on two publicly available HSI datasets show that the HSVRFs model outperforms traditional and state-of-the art methods in HSI classification, especially for datasets containing complicated details.
</p>
<pre xml:space="preserve" id="yangIJGI2018Bib" class="bibtex" style="display: none;">
@inproceedings{yangIJGI2018,
title = {Higher Order Support Vector Random Fields for
Hyperspectral Image Classification},
author = {Junli Yang and Zhiguo Jiang and Shuang Hao and Haopeng Zhang},
booktitle = {2018 ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION(IJGI)},
doi = {10.3390/ijgi7010019},
year = {2018}
}
</pre>
<script language="javascript" type="text/javascript" xml:space="preserve">
hideblock('yangIJGI2018Abs');
hideblock('yangIJGI2018Bib');
</script>
</td>
</tr> <!-- Paper End Here -->
</tbody></table>
</div>
<div class="get-more" align="right"><a href="publications.html"> More </a></div>
</div>
</introduce>
</div>
<!-- Slid Page -->
<div class="col-md-4 sidebar-gutter">
<aside>
<!-- sidebar-widget -->
<div class="sidebar-widget">
<div class="widget-container widget-main">
<img src="images/photo_x/JiangZG.jpg" alt="JiangZG's photo">
<h4>Zhiguo Jiang</h4>
<div class="author-title">Professor</div>
<p>
<b>Address:</b> No. 37 Xueyuan Road, Haidian District, Beijing, P.R. China, 100191<br>
<b>E-mail:</b> <a href="mailto:[email protected]">[email protected]</a><br>
<b>Tel:</b> +86-010-8231-6173<br>
<b>Fax:</b> +86-010-8233-8798<br>
<b>Office:</b> New Main Bulding B-1125<br>
<b>Research Interests:</b><br>
</p>
</div>
</div>
<!-- sidebar-widget -->
<div class="sidebar-widget">
<h3 class="sidebar-title">Researchers</h3>
<div class="widget-container">
<article class="widget-block">
<div class="block-image"> <img src="images/photo_x/XieFY.jpg" alt="XieFY's photo"> </div>
<div class="block-body">
<h2><a href="http://xfy.buaa.edu.cn" target="_blank">Fengying Xie <i class="fa fa-external-link"></i></a></h2>
<div class="icon-meta">
<span><i class="fa fa-graduation-cap"></i> Professor</span> <span><i class="fa fa-clock-o"></i> 2011.01 ~ Now</span>
<br><span><i class="fa fa-envelope-o"></i> <a href="mailto:[email protected]">[email protected]</a></span>
</div>
</div>
</article>
<article class="widget-block">
<div class="block-image"> <img src="images/photo_x/ZhaoDP.jpg" alt="ZhaoDP's photo"> </div>
<div class="block-body">
<h2>Danpei Zhao</h2>
<div class="icon-meta">
<span><i class="fa fa-graduation-cap"></i>A. Professor</span> <span><i class="fa fa-clock-o"></i> 2011.01 ~ Now</span>
<br><span><i class="fa fa-envelope-o"></i> <a href="mailto:[email protected]">[email protected]</a></span>
</div>
</div>
</article>
<article class="widget-block">
<div class="block-image"> <img src="images/photo_x/ZhangHP.jpg" alt="ZhangHP's photo"> </div>
<div class="block-body">
<h2>Haopeng Zhang</h2>
<div class="icon-meta">
<span><i class="fa fa-graduation-cap"></i>Ph.D.</span> <span><i class="fa fa-clock-o"></i> 2011.01 ~ Now</span>
<br><span><i class="fa fa-envelope-o"></i> <a href="mailto:[email protected]">[email protected]</a></span>
</div>
</div>
</article>
</div>
</div>
<!-- sidebar-widget -->
<div class="sidebar-widget">
<h3 class="sidebar-title">Contact Us</h3>
<div class="widget-container">
<p>
<b>Address:</b> New Main Bulding D-409, Beihang University, Beijing, P.R. China, 100191<br>
<b>Tel:</b> +86-010-8233-8061<br>
<b>Fax:</b> +86-010-8233-8798<br>
</p>
</div>
</div>
<!-- sidebar-widget -->
<div class="sidebar-widget">
<h3 class="sidebar-title">Related Links</h3>
<div class="widget-container">
<ul style="list-style: none; padding-left: 10px;">
<li><i class="fa fa-external-link"></i> <a href="https://remex-lab.github.io/" target="_blank">REMEX (on GitHub Server)</a></li>
<li><i class="fa fa-external-link"></i> <a href="http://xfy.buaa.edu.cn" target="_blank">Xie's Lab</a></li>
<li><i class="fa fa-external-link"></i> <a href="http://ev.buaa.edu.cn/" target="_blank">Beihang University</a></li>
<li><i class="fa fa-external-link"></i> <a href="http://www.sa.buaa.edu.cn/xysy.htm" target="_blank">School of Astronautics</a></li>
</ul>
</div>
</div>
</aside>
</div>
</div>
</section>
</div><!-- /.container -->
<footer class="footer">
<div class="footer-bottom">
<i class="fa fa-copyright"></i> Copyright 2018. All rights reserved.<br>
<i class="fa fa-ship"></i> <a href="index.html"><b>Back to normal</b><i class="fa fa-sign-out"></i></a>
</div>
</footer>
<!-- Bootstrap core JavaScript
================================================== -->
<!-- Placed at the end of the document so the pages load faster -->
<script src="scripts/jquery.min.js"></script>
<script src="scripts/bootstrap.min.js"></script>
<script src="scripts/jquery.bxslider.js"></script>
<script src="scripts/mooz.scripts.min.js"></script>
<script src="scripts/togglehide.js"></script>
</body>
</html>