|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 46, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "from fastai.vision import *\n", |
| 10 | + "import pandas as pd\n", |
| 11 | + "import numpy as np\n", |
| 12 | + "import torch" |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "code", |
| 17 | + "execution_count": 47, |
| 18 | + "metadata": {}, |
| 19 | + "outputs": [], |
| 20 | + "source": [ |
| 21 | + "path = Path('../data/train')" |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "code", |
| 26 | + "execution_count": 48, |
| 27 | + "metadata": {}, |
| 28 | + "outputs": [ |
| 29 | + { |
| 30 | + "data": { |
| 31 | + "text/plain": [ |
| 32 | + "[WindowsPath('../data/train/MildDemented'),\n", |
| 33 | + " WindowsPath('../data/train/models'),\n", |
| 34 | + " WindowsPath('../data/train/ModerateDemented'),\n", |
| 35 | + " WindowsPath('../data/train/NonDemented'),\n", |
| 36 | + " WindowsPath('../data/train/VeryMildDemented')]" |
| 37 | + ] |
| 38 | + }, |
| 39 | + "execution_count": 48, |
| 40 | + "metadata": {}, |
| 41 | + "output_type": "execute_result" |
| 42 | + } |
| 43 | + ], |
| 44 | + "source": [ |
| 45 | + "path.ls()" |
| 46 | + ] |
| 47 | + }, |
| 48 | + { |
| 49 | + "cell_type": "code", |
| 50 | + "execution_count": null, |
| 51 | + "metadata": {}, |
| 52 | + "outputs": [], |
| 53 | + "source": [ |
| 54 | + "np.random.seed(42)\n", |
| 55 | + "data = ImageDataBunch.from_folder(path, train=\".\", valid_pct=0.2,\n", |
| 56 | + " size=128, num_workers=4).normalize(imagenet_stats)" |
| 57 | + ] |
| 58 | + }, |
| 59 | + { |
| 60 | + "cell_type": "code", |
| 61 | + "execution_count": null, |
| 62 | + "metadata": {}, |
| 63 | + "outputs": [], |
| 64 | + "source": [ |
| 65 | + "data.classes" |
| 66 | + ] |
| 67 | + }, |
| 68 | + { |
| 69 | + "cell_type": "code", |
| 70 | + "execution_count": null, |
| 71 | + "metadata": {}, |
| 72 | + "outputs": [], |
| 73 | + "source": [ |
| 74 | + "data.classes, data.c, len(data.train_ds), len(data.valid_ds)\n" |
| 75 | + ] |
| 76 | + }, |
| 77 | + { |
| 78 | + "cell_type": "code", |
| 79 | + "execution_count": null, |
| 80 | + "metadata": {}, |
| 81 | + "outputs": [], |
| 82 | + "source": [ |
| 83 | + "learn = cnn_learner(data, models.resnet101, metrics=error_rate)" |
| 84 | + ] |
| 85 | + }, |
| 86 | + { |
| 87 | + "cell_type": "code", |
| 88 | + "execution_count": null, |
| 89 | + "metadata": {}, |
| 90 | + "outputs": [], |
| 91 | + "source": [ |
| 92 | + "learn.fit_one_cycle(4)\n" |
| 93 | + ] |
| 94 | + }, |
| 95 | + { |
| 96 | + "cell_type": "code", |
| 97 | + "execution_count": null, |
| 98 | + "metadata": {}, |
| 99 | + "outputs": [], |
| 100 | + "source": [ |
| 101 | + "learn.save('stage-1') # Save the first stage of the model\n" |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "cell_type": "code", |
| 106 | + "execution_count": null, |
| 107 | + "metadata": {}, |
| 108 | + "outputs": [], |
| 109 | + "source": [] |
| 110 | + }, |
| 111 | + { |
| 112 | + "cell_type": "code", |
| 113 | + "execution_count": null, |
| 114 | + "metadata": {}, |
| 115 | + "outputs": [], |
| 116 | + "source": [] |
| 117 | + } |
| 118 | + ], |
| 119 | + "metadata": { |
| 120 | + "kernelspec": { |
| 121 | + "display_name": "Python 3.7.7 64-bit ('python36': conda)", |
| 122 | + "language": "python", |
| 123 | + "name": "python37764bitpython36condadac793e125124000a42e65e438db1e77" |
| 124 | + }, |
| 125 | + "language_info": { |
| 126 | + "codemirror_mode": { |
| 127 | + "name": "ipython", |
| 128 | + "version": 3 |
| 129 | + }, |
| 130 | + "file_extension": ".py", |
| 131 | + "mimetype": "text/x-python", |
| 132 | + "name": "python", |
| 133 | + "nbconvert_exporter": "python", |
| 134 | + "pygments_lexer": "ipython3", |
| 135 | + "version": "3.7.7" |
| 136 | + } |
| 137 | + }, |
| 138 | + "nbformat": 4, |
| 139 | + "nbformat_minor": 4 |
| 140 | +} |
0 commit comments