|
46 | 46 | "cell_type": "code",
|
47 | 47 | "execution_count": 2,
|
48 | 48 | "metadata": {},
|
49 |
| - "outputs": [ |
50 |
| - { |
51 |
| - "name": "stderr", |
52 |
| - "output_type": "stream", |
53 |
| - "text": [ |
54 |
| - "/var/folders/q5/tfpytqxn0r396dfg7rk5sj8rwq9tvv/T/ipykernel_77703/3508303544.py:5: DeprecationWarning: \n", |
55 |
| - "Pyarrow will become a required dependency of pandas in the next major release of pandas (pandas 3.0),\n", |
56 |
| - "(to allow more performant data types, such as the Arrow string type, and better interoperability with other libraries)\n", |
57 |
| - "but was not found to be installed on your system.\n", |
58 |
| - "If this would cause problems for you,\n", |
59 |
| - "please provide us feedback at https://github.com/pandas-dev/pandas/issues/54466\n", |
60 |
| - " \n", |
61 |
| - " import pandas as pd\n" |
62 |
| - ] |
63 |
| - } |
64 |
| - ], |
| 49 | + "outputs": [], |
65 | 50 | "source": [
|
66 | 51 | "# Import required packages\n",
|
67 | 52 | "from datetime import datetime\n",
|
|
85 | 70 | "cell_type": "code",
|
86 | 71 | "execution_count": 3,
|
87 | 72 | "metadata": {},
|
88 |
| - "outputs": [ |
89 |
| - { |
90 |
| - "name": "stderr", |
91 |
| - "output_type": "stream", |
92 |
| - "text": [ |
93 |
| - "/Users/rhammond/GitHub_Public/OpenOA/examples/project_ENGIE.py:106: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0!\n", |
94 |
| - "You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy.\n", |
95 |
| - "A typical example is when you are setting values in a column of a DataFrame, like:\n", |
96 |
| - "\n", |
97 |
| - "df[\"col\"][row_indexer] = value\n", |
98 |
| - "\n", |
99 |
| - "Use `df.loc[row_indexer, \"col\"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`.\n", |
100 |
| - "\n", |
101 |
| - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", |
102 |
| - "\n", |
103 |
| - " scada_df.loc[ix_turbine, \"Ot_avg\"].loc[ix_flag.values.flatten()] = np.nan\n", |
104 |
| - "/Users/rhammond/GitHub_Public/OpenOA/examples/project_ENGIE.py:106: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0!\n", |
105 |
| - "You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy.\n", |
106 |
| - "A typical example is when you are setting values in a column of a DataFrame, like:\n", |
107 |
| - "\n", |
108 |
| - "df[\"col\"][row_indexer] = value\n", |
109 |
| - "\n", |
110 |
| - "Use `df.loc[row_indexer, \"col\"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`.\n", |
111 |
| - "\n", |
112 |
| - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", |
113 |
| - "\n", |
114 |
| - " scada_df.loc[ix_turbine, \"Ot_avg\"].loc[ix_flag.values.flatten()] = np.nan\n", |
115 |
| - "/Users/rhammond/GitHub_Public/OpenOA/examples/project_ENGIE.py:106: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0!\n", |
116 |
| - "You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy.\n", |
117 |
| - "A typical example is when you are setting values in a column of a DataFrame, like:\n", |
118 |
| - "\n", |
119 |
| - "df[\"col\"][row_indexer] = value\n", |
120 |
| - "\n", |
121 |
| - "Use `df.loc[row_indexer, \"col\"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`.\n", |
122 |
| - "\n", |
123 |
| - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", |
124 |
| - "\n", |
125 |
| - " scada_df.loc[ix_turbine, \"Ot_avg\"].loc[ix_flag.values.flatten()] = np.nan\n", |
126 |
| - "/Users/rhammond/GitHub_Public/OpenOA/examples/project_ENGIE.py:106: FutureWarning: ChainedAssignmentError: behaviour will change in pandas 3.0!\n", |
127 |
| - "You are setting values through chained assignment. Currently this works in certain cases, but when using Copy-on-Write (which will become the default behaviour in pandas 3.0) this will never work to update the original DataFrame or Series, because the intermediate object on which we are setting values will behave as a copy.\n", |
128 |
| - "A typical example is when you are setting values in a column of a DataFrame, like:\n", |
129 |
| - "\n", |
130 |
| - "df[\"col\"][row_indexer] = value\n", |
131 |
| - "\n", |
132 |
| - "Use `df.loc[row_indexer, \"col\"] = values` instead, to perform the assignment in a single step and ensure this keeps updating the original `df`.\n", |
133 |
| - "\n", |
134 |
| - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", |
135 |
| - "\n", |
136 |
| - " scada_df.loc[ix_turbine, \"Ot_avg\"].loc[ix_flag.values.flatten()] = np.nan\n" |
137 |
| - ] |
138 |
| - } |
139 |
| - ], |
| 73 | + "outputs": [], |
140 | 74 | "source": [
|
141 | 75 | "# Load wind farm object, append the analysis type for this example, and revalidate the data\n",
|
142 | 76 | "project = project_ENGIE.prepare('./data/la_haute_borne', use_cleansed=False)\n",
|
|
176 | 110 | "name": "stderr",
|
177 | 111 | "output_type": "stream",
|
178 | 112 | "text": [
|
179 |
| - "100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 1/1 [00:00<00:00, 365.39it/s]\n" |
| 113 | + "100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 1/1 [00:00<00:00, 372.60it/s]\n" |
180 | 114 | ]
|
181 | 115 | }
|
182 | 116 | ],
|
|
301 | 235 | "name": "stderr",
|
302 | 236 | "output_type": "stream",
|
303 | 237 | "text": [
|
304 |
| - "100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 3000/3000 [00:01<00:00, 1762.28it/s]\n" |
| 238 | + "100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 3000/3000 [00:01<00:00, 1958.02it/s]\n" |
305 | 239 | ]
|
306 | 240 | }
|
307 | 241 | ],
|
|
326 | 260 | "name": "stdout",
|
327 | 261 | "output_type": "stream",
|
328 | 262 | "text": [
|
329 |
| - "Electrical losses are 2.01%\n", |
| 263 | + "Electrical losses are 1.99%\n", |
330 | 264 | "Uncertainty in the electrical loss estimate is 0.69%\n"
|
331 | 265 | ]
|
332 | 266 | }
|
|
361 | 295 | "name": "python",
|
362 | 296 | "nbconvert_exporter": "python",
|
363 | 297 | "pygments_lexer": "ipython3",
|
364 |
| - "version": "3.9.18" |
| 298 | + "version": "3.11.7" |
365 | 299 | },
|
366 | 300 | "toc": {
|
367 | 301 | "base_numbering": 1,
|
|
0 commit comments