-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathworkers.py
518 lines (444 loc) · 17.3 KB
/
workers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
# WARNING: you are on the master branch, please refer to the examples on the branch that matches your `cortex version`
from utils.image import (
resize_image,
compress_image,
image_from_bytes,
image_to_jpeg_nparray,
image_to_jpeg_bytes,
)
from utils.bbox import BoundBox, draw_boxes
from statistics import mean
import time, base64, pickle, json, cv2, logging, requests, queue, broadcast, copy, statistics
import numpy as np
import threading as td
import multiprocessing as mp
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
session = requests.Session()
class WorkerTemplateThread(td.Thread):
def __init__(self, event_stopper, name=None, runnable=None):
td.Thread.__init__(self, name=name)
self.event_stopper = event_stopper
self.runnable = runnable
def run(self):
if self.runnable:
logger.debug("worker started")
while not self.event_stopper.is_set():
self.runnable()
time.sleep(0.030)
logger.debug("worker stopped")
def stop(self):
self.event_stopper.set()
class WorkerTemplateProcess(mp.Process):
def __init__(self, event_stopper, name=None, runnable=None):
mp.Process.__init__(self, name=name)
self.event_stopper = event_stopper
self.runnable = runnable
def run(self):
if self.runnable:
logger.debug("worker started")
while not self.event_stopper.is_set():
self.runnable()
time.sleep(0.030)
logger.debug("worker stopped")
def stop(self):
self.event_stopper.set()
class BroadcastReassembled(WorkerTemplateProcess):
"""
Separate process to broadcast the stream with the overlayed predictions on top of it.
"""
def __init__(self, in_queue, cfg, name=None):
"""
in_queue - Queue from which to extract the frames with the overlayed predictions on top of it.
cfg - The dictionary config for the broadcaster.
name - Name of the process.
"""
super(BroadcastReassembled, self).__init__(event_stopper=mp.Event(), name=name)
self.in_queue = in_queue
self.yolo3_rtt = None
self.crnn_rtt = None
self.detections = 0
self.current_detections = 0
self.recognitions = 0
self.current_recognitions = 0
self.buffer = []
self.oldest_broadcasted_frame = 0
for key, value in cfg.items():
setattr(self, key, value)
def run(self):
# start streaming server
def lambda_func():
server = broadcast.StreamingServer(
tuple(self.serve_address), broadcast.StreamingHandler
)
server.serve_forever()
td.Thread(target=lambda_func, args=(), daemon=True).start()
logger.info("listening for stream clients on {}".format(self.serve_address))
# start polling for new processed frames from the queue and broadcast
logger.info("worker started")
counter = 0
while not self.event_stopper.is_set():
if counter == self.target_fps:
logger.debug("buffer queue size: {}".format(len(self.buffer)))
counter = 0
self.reassemble()
time.sleep(0.001)
counter += 1
logger.info("worker stopped")
def reassemble(self):
"""
Main method to run in the loop.
"""
start = time.time()
self.pull_and_push()
self.purge_stale_frames()
frame, delay = self.pick_new_frame()
# delay loop to stabilize the video fps
end = time.time()
elapsed_time = end - start
elapsed_time += 0.001 # count in the millisecond in self.run
if delay - elapsed_time > 0.0:
time.sleep(delay - elapsed_time)
if frame:
# pull and push again in case
# write buffer (assume it takes an insignificant time to execute)
self.pull_and_push()
broadcast.output.write(frame)
def pull_and_push(self):
"""
Get new frame and push it in the broadcaster's little buffer for stabilization.
"""
try:
data = self.in_queue.get_nowait()
except queue.Empty:
# logger.warning("no data available for worker")
return
# extract data
boxes = data["boxes"]
frame_num = data["frame_num"]
yolo3_rtt = data["avg_yolo3_rtt"]
crnn_rtt = data["avg_crnn_rtt"]
byte_im = data["image"]
# run statistics
self.statistics(yolo3_rtt, crnn_rtt, len(boxes), 0)
# push frames to buffer and pick new frame
self.buffer.append({"image": byte_im, "frame_num": frame_num})
def purge_stale_frames(self):
"""
Remove any frames older than the latest broadcasted frame.
"""
new_buffer = []
for frame in self.buffer:
if frame["frame_num"] > self.oldest_broadcasted_frame:
new_buffer.append(frame)
self.buffer = new_buffer
def pick_new_frame(self):
"""
Get the oldest frame from the buffer that isn't older than the last broadcasted frame.
"""
current_desired_fps = self.target_fps - self.max_fps_variation
delay = 1 / current_desired_fps
if len(self.buffer) == 0:
return None, delay
newlist = sorted(self.buffer, key=lambda k: k["frame_num"])
idx_to_del = 0
for idx, frame in enumerate(newlist):
if frame["frame_num"] < self.oldest_broadcasted_frame:
idx_to_del = idx + 1
newlist = newlist[idx_to_del:]
if len(newlist) == 0:
return None, delay
self.buffer = newlist[::-1]
element = self.buffer.pop()
frame = element["image"]
self.oldest_broadcasted_frame = element["frame_num"]
size = len(self.buffer)
variation = size - self.target_buffer_size
var_perc = variation / self.max_buffer_size_variation
current_desired_fps = self.target_fps + var_perc * self.max_fps_variation
if current_desired_fps < 0:
current_desired_fps = self.target_fps - self.max_fps_variation
try:
delay = 1 / current_desired_fps
except ZeroDivisionError:
current_desired_fps = self.target_fps - self.max_fps_variation
delay = 1 / current_desired_fps
return frame, delay
def statistics(self, yolo3_rtt, crnn_rtt, detections, recognitions):
"""
A bunch of RTT and detection/recognition statistics. Not used.
"""
if not self.yolo3_rtt:
self.yolo3_rtt = yolo3_rtt
else:
self.yolo3_rtt = self.yolo3_rtt * 0.98 + yolo3_rtt * 0.02
if not self.crnn_rtt:
self.crnn_rtt = crnn_rtt
else:
self.crnn_rtt = self.crnn_rtt * 0.98 + crnn_rtt * 0.02
self.detections += detections
self.current_detections = detections
self.recognitions += recognitions
self.current_recognitions = recognitions
class InferenceWorker(WorkerTemplateThread):
"""
Worker that receives frames from a queue, sends requests to 2 cortex APIs for inference reasons,
and retrieves the results and puts them in their appropriate queues.
"""
def __init__(self, event_stopper, in_queue, bc_queue, predicts_queue, cfg, name=None):
"""
event_stopper - Event to stop the worker.
in_queue - Queue that holds the unprocessed frames.
bc_queue - Queue to push into the frames with the overlayed predictions.
predicts_queue - Queue to push into the detected license plates that will eventually get written to the disk.
cfg - Dictionary config for the worker.
name - Name of the worker thread.
"""
super(InferenceWorker, self).__init__(event_stopper=event_stopper, name=name)
self.in_queue = in_queue
self.bc_queue = bc_queue
self.predicts_queue = predicts_queue
self.rtt_yolo3_ms = None
self.rtt_crnn_ms = 0
self.runnable = self.cloud_infer
for key, value in cfg.items():
setattr(self, key, value)
def cloud_infer(self):
"""
Main method that runs in the loop.
"""
try:
data = self.in_queue.get_nowait()
except queue.Empty:
# logger.warning("no data available for worker")
return
#############################
# extract frame
frame_num = data["frame_num"]
img = data["jpeg"]
# preprocess/compress the image
image = image_from_bytes(img)
reduced = compress_image(image)
byte_im = image_to_jpeg_bytes(reduced)
# encode image
img_enc = base64.b64encode(byte_im).decode("utf-8")
img_dump = json.dumps({"img": img_enc})
# make inference request
resp = self.yolov3_api_request(img_dump)
if not resp:
return
#############################
# parse response
r_dict = resp.json()
boxes_raw = r_dict["boxes"]
boxes = []
for b in boxes_raw:
box = BoundBox(*b)
boxes.append(box)
# purge bounding boxes with a low confidence score
aux = []
for b in boxes:
label = -1
for i in range(len(b.classes)):
if b.classes[i] > self.yolov3_obj_thresh:
label = i
if label >= 0:
aux.append(b)
boxes = aux
del aux
# also scale the boxes for later uses
camera_source_width = image.shape[1]
boxes640 = self.scale_bbox(boxes, self.yolov3_input_size_px, self.bounding_boxes_upscale_px)
boxes_source = self.scale_bbox(boxes, self.yolov3_input_size_px, camera_source_width)
#############################
# recognize the license plates in case
# any bounding boxes have been detected
dec_words = []
if len(boxes) > 0 and len(self.api_endpoint_crnn) > 0:
# create set of images of the detected license plates
lps = []
try:
for b in boxes_source:
lp = image[b.ymin : b.ymax, b.xmin : b.xmax]
jpeg = image_to_jpeg_nparray(
lp, [int(cv2.IMWRITE_JPEG_QUALITY), self.crnn_quality]
)
lps.append(jpeg)
except:
logger.warning("encountered error while converting to jpeg")
pass
lps = pickle.dumps(lps, protocol=0)
lps_enc = base64.b64encode(lps).decode("utf-8")
lps_dump = json.dumps({"imgs": lps_enc})
# make request to rcnn API
dec_lps = self.rcnn_api_request(lps_dump)
dec_lps = self.reorder_recognized_words(dec_lps)
for dec_lp in dec_lps:
dec_words.append([word[0] for word in dec_lp])
if len(dec_words) > 0:
logger.info("Detected the following words: {}".format(dec_words))
else:
dec_words = [[] for i in range(len(boxes))]
#############################
# draw detections
upscaled = resize_image(image, self.bounding_boxes_upscale_px)
draw_image = draw_boxes(
upscaled,
boxes640,
overlay_text=dec_words,
labels=["LP"],
obj_thresh=self.yolov3_obj_thresh,
)
draw_byte_im = image_to_jpeg_bytes(
draw_image, [int(cv2.IMWRITE_JPEG_QUALITY), self.broadcast_quality]
)
#############################
# push data for further processing in the queue
output = {
"boxes": boxes,
"frame_num": frame_num,
"avg_yolo3_rtt": self.rtt_yolo3_ms,
"avg_crnn_rtt": self.rtt_crnn_ms,
"image": draw_byte_im,
}
self.bc_queue.put(output)
# push predictions to write to disk
if len(dec_words) > 0:
timestamp = time.time()
literal_time = time.ctime(timestamp)
predicts = {"predicts": dec_words, "date": literal_time}
self.predicts_queue.put(predicts)
logger.info(
"Frame Count: {} - Avg YOLO3 RTT: {}ms - Avg CRNN RTT: {}ms - Detected: {}".format(
frame_num, int(self.rtt_yolo3_ms), int(self.rtt_crnn_ms), len(boxes)
)
)
def scale_bbox(self, boxes, old_width, new_width):
"""
Scale a bounding box.
"""
boxes = copy.deepcopy(boxes)
scale_percent = new_width / old_width
for b in boxes:
b.xmin = int(b.xmin * scale_percent)
b.ymin = int(b.ymin * scale_percent)
b.xmax = int(b.xmax * scale_percent)
b.ymax = int(b.ymax * scale_percent)
return boxes
def yolov3_api_request(self, img_dump):
"""
Make a request to the YOLOv3 API.
"""
# make inference request
try:
start = time.time()
resp = None
resp = session.post(
self.api_endpoint_yolov3,
data=img_dump,
headers={"content-type": "application/json"},
timeout=self.timeout,
)
except requests.exceptions.Timeout as e:
logger.warning("timeout on yolov3 inference request")
time.sleep(0.10)
return None
except Exception as e:
time.sleep(0.10)
logger.warning("timing/connection error on yolov3", exc_info=True)
return None
finally:
end = time.time()
if not resp:
pass
elif resp.status_code != 200:
logger.warning("received {} status code from yolov3 api".format(resp.status_code))
return None
# calculate average rtt (use complementary filter)
current = int((end - start) * 1000)
if not self.rtt_yolo3_ms:
self.rtt_yolo3_ms = current
else:
self.rtt_yolo3_ms = self.rtt_yolo3_ms * 0.98 + current * 0.02
return resp
def rcnn_api_request(self, lps_dump, timeout=1.200):
"""
Make a request to the CRNN API.
"""
# make request to rcnn API
try:
start = time.time()
resp = None
resp = session.post(
self.api_endpoint_crnn,
data=lps_dump,
headers={"content-type": "application/json"},
timeout=self.timeout,
)
except requests.exceptions.Timeout as e:
logger.warning("timeout on crnn inference request")
except:
logger.warning("timing/connection error on crnn", exc_info=True)
finally:
end = time.time()
dec_lps = []
if not resp:
pass
elif resp.status_code != 200:
logger.warning("received {} status code from crnn api".format(resp.status_code))
else:
r_dict = resp.json()
dec_lps = r_dict["license-plates"]
# calculate average rtt (use complementary filter)
current = int((end - start) * 1000)
self.rtt_crnn_ms = self.rtt_crnn_ms * 0.98 + current * 0.02
return dec_lps
def reorder_recognized_words(self, detected_images):
"""
Reorder the detected words in each image based on the average horizontal position of each word.
Sorting them in ascending order.
"""
reordered_images = []
for detected_image in detected_images:
# computing the mean average position for each word
mean_horizontal_positions = []
for words in detected_image:
box = words[1]
y_positions = [point[0] for point in box]
mean_y_position = mean(y_positions)
mean_horizontal_positions.append(mean_y_position)
indexes = np.argsort(mean_horizontal_positions)
# and reordering them
reordered = []
for index, words in zip(indexes, detected_image):
reordered.append(detected_image[index])
reordered_images.append(reordered)
return reordered_images
class Flusher(WorkerTemplateThread):
"""
Thread which removes the elements of a queue when its size crosses a threshold.
Used when there are too many frames are pilling up in the queue.
"""
def __init__(self, queue, threshold, name=None):
"""
queue - Queue to remove the elements from when the threshold is triggered.
threshold - Number of elements.
name - Name of the thread.
"""
super(Flusher, self).__init__(event_stopper=td.Event(), name=name)
self.queue = queue
self.threshold = threshold
self.runnable = self.flush_pipe
def flush_pipe(self):
"""
Main method to run in the loop.
"""
current = self.queue.qsize()
if current > self.threshold:
try:
for i in range(current):
self.queue.get_nowait()
logger.warning("flushed {} elements from the frames queue".format(current))
except queue.Empty:
logger.debug("flushed too many elements from the queue")
time.sleep(0.5)