@@ -138,11 +138,11 @@ end
138
138
# implement Neumann and Dirichlet as special cases of RobinBC
139
139
NeumannBC (α:: NTuple{2,T} , dx:: Union{AbstractVector{U}, U} , order = 1 ) where {T<: Number ,U<: Real } = RobinBC ((zero (T), one (T), α[1 ]), (zero (T), one (T), α[2 ]), dx, order)
140
140
DirichletBC (αl:: T , αr:: T ) where {T<: Real } = RobinBC ((one (T), zero (T), αl), (one (T), zero (T), αr), one (T), 2 one (T) )
141
- DirichletBC (U :: Type ,αl:: T , αr:: T ) where {T<: Number ,U<: Real } = RobinBC ((one (T), zero (T), αl), (one (T), zero (T), αr), one (U), 2 one (U) )
141
+ DirichletBC (:: Type{U} ,αl:: T , αr:: T ) where {T<: Number ,U<: Real } = RobinBC ((one (T), zero (T), αl), (one (T), zero (T), αr), one (U), 2 one (U) )
142
142
# specialized constructors for Neumann0 and Dirichlet0
143
143
Dirichlet0BC (T:: Type ) = DirichletBC (zero (T), zero (T))
144
144
Neumann0BC (dx:: Union{AbstractVector{T}, T} , order = 1 ) where {T<: Real } = NeumannBC ((zero (T), zero (T)), dx, order)
145
- Neumann0BC (U :: Type ,dx:: Union{AbstractVector{T}, T} , order = 1 ) where {T<: Real ,U<: Number } = NeumannBC ((zero (U), zero (U)), dx, order)
145
+ Neumann0BC (:: Type{U} ,dx:: Union{AbstractVector{T}, T} , order = 1 ) where {T<: Real ,U<: Number } = NeumannBC ((zero (U), zero (U)), dx, order)
146
146
147
147
# other acceptable argument signatures
148
148
# RobinBC(al::T, bl::T, cl::T, dx_l::T, ar::T, br::T, cr::T, dx_r::T, order = 1) where T = RobinBC([al,bl, cl], [ar, br, cr], dx_l, order)
0 commit comments