-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
487 lines (447 loc) · 20.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import sys
import gym
import torch
import copy
import dill
import argparse
import importlib
import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import torch.nn.functional as F
from torch import nn
from tqdm import tqdm, trange
from ipdb import slaunch_ipdb_on_exception
from pathlib import Path
import exps._exp_utils.run as exps
import postprocess
from envs import *
from models import GaussianPolicy, get_mlp
from utils import MPSampler, SeqSampler, ArrayRQMCSampler, VecSampler, rollout # sampler
from utils import sort_by_optimal_value, sort_by_norm, multdim_sort, no_sort, sort_by_policy_value # sorting function
from utils import reinforce_loss, variance_reduced_loss, no_loss, lqr_gt_loss # loss function
from utils import set_seed, select_device, tensor, running_seeds, collect_seeds, get_gaussian_policy_gradient, random_permute, logger, debug, Config, HorizonWrapper, cosine_similarity
from utils import ssj_uniform, random_shift, uniform2normal
Config.DEBUG = True
# TODO:
# async vec env, batch action
def parse_args(args=None):
parser = argparse.ArgumentParser()
parser.add_argument(
'--task',
choices=['cost', 'grad', 'learn'],
default='learn')
parser.add_argument('--algos', default=['mc', 'rqmc', 'arqmc'], nargs='+', choices=['mc', 'rqmc', 'arqmc', 'gt']) # learning use it
parser.add_argument('--env', choices=['lqr', 'cartpole', 'swimmer', 'ant', 'pointmass'], default='lqr')
parser.add_argument('--map_name', type=str, default='8x8') # for pointmass only
parser.add_argument('--xu_dim', type=int, nargs=2, default=(20, 12))
parser.add_argument('--init_scale', type=float, default=3.0)
parser.add_argument('--PQ_kappa', type=float, default=3.0)
parser.add_argument('--AB_norm', type=float, default=1.0)
parser.add_argument('-H', type=int, default=10, help='horizon')
parser.add_argument('--noise', type=float, default=0.0, help='noise scale')
parser.add_argument('--sorter', nargs='+', choices=['value', 'policy', 'norm', 'none', 'permute', 'group'], default=['value'])
parser.add_argument('--n_trajs', type=int, default=800, help='number of trajectories used')
parser.add_argument('--n_iters', type=int, default=200, help='number of iterations of training')
parser.add_argument('-lr', type=float, default=5e-5)
parser.add_argument('--init_policy', choices=['optimal', 'linear', 'linear_bias', 'mlp'], default='linear')
parser.add_argument('--fix_std', action='store_true')
parser.add_argument('--gate_output', action='store_true')
parser.add_argument('--hidden_sizes', nargs='+', type=int, default=[16])
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--show_fig', action='store_true')
parser.add_argument('--save_fig', type=str, default=None)
parser.add_argument('--mode', choices=['single', 'seeds', 'collect'], default='single')
parser.add_argument('--n_seeds', type=int, default=200)
parser.add_argument('--max_seed', type=int, default=100)
parser.add_argument('--n_workers', type=int, default=1)
parser.add_argument('--save_fn', type=str, default=None)
parser.add_argument('--post_f', type=str, default=None) # post processing function
parser.add_argument('--cpu', action='store_true')
args = exps.parse_args(parser, args, exp_name_attr='save_fn')
return args
LQR_ENVS = ['lqr']
def get_env(args):
if args.env == 'lqr':
env = LQR(
N=args.xu_dim[0],
M=args.xu_dim[1],
init_scale=args.init_scale,
max_steps=args.H,
Sigma_s_kappa=1.0,
Q_kappa=args.PQ_kappa,
P_kappa=args.PQ_kappa,
A_norm=args.AB_norm,
B_norm=args.AB_norm,
Sigma_s_scale=args.noise,
#random_init=True,
lims=100,
)
elif args.env == 'cartpole':
env = HorizonWrapper(CartPoleContinuousEnv(), args.H)
#env = CartPoleContinuousEnv()
elif args.env == 'ant':
env = HorizonWrapper(gym.make('Ant-v2'), args.H)
elif args.env == 'swimmer':
env = HorizonWrapper(gym.make('Swimmer-v2'), args.H)
elif args.env == 'pointmass':
env = HorizonWrapper(PointMass(args.map_name, goal=(2, 2), init_pos=(8, 8)), args.H)
else:
raise Exception('unsupported lqr env')
return env
def get_policy(args, env):
N = env.observation_space.shape[0]
M = env.action_space.shape[0]
if args.init_policy == 'optimal':
K = env.optimal_controller()
mean_network = nn.Linear(*K.shape[::-1], bias=False)
mean_network.weight.data = tensor(K)
elif args.init_policy == 'linear':
K = np.random.randn(M, N)
mean_network = nn.Linear(*K.shape[::-1], bias=False)
mean_network.weight.data = tensor(K)
elif args.init_policy == 'linear_bias':
K = np.random.randn(M, N)
mean_network = nn.Linear(*K.shape[::-1], bias=True)
mean_network.weight.data = tensor(K)
elif args.init_policy == 'mlp':
mean_network = get_mlp((N,) + tuple(args.hidden_sizes) + (M,), gate=nn.Tanh)
else:
raise Exception('unsupported policy type')
return GaussianPolicy(N, M, mean_network, learn_std=not args.fix_std, gate_output=args.gate_output)
def get_rqmc_noises(n_trajs, n_steps, action_dim, noise_type):
if noise_type == 'trajwise':
loc = torch.zeros(n_steps * action_dim)
scale = torch.ones(n_steps * action_dim)
noises = Normal_RQMC(loc, scale).sample(torch.Size([n_trajs])).data.numpy().reshape((n_trajs, n_steps, action_dim))
elif noise_type == 'array':
from scipy.stats import norm
loc = torch.zeros(action_dim)
scale = torch.ones(action_dim)
noises = np.asarray([Normal_RQMC(loc, scale).sample(torch.Size([n_trajs])).data.numpy() for _ in range(n_steps)]).reshape(n_steps, n_trajs, action_dim).transpose(1, 0, 2)
elif noise_type == 'ssj':
noises = np.array([ssj_normal(n_trajs, action_dim) for _ in range(n_steps)]).transpose(1, 0, 2)
else:
raise Exception('unknown rqmc type')
return noises
def get_sorter(sorter, env, K=None):
if sorter == 'value':
return lambda pairs: sorted(pairs, key=sort_by_optimal_value(env))
elif sorter == 'policy':
return lambda pairs: sorted(pairs, key=sort_by_policy_value(env, K))
elif sorter == 'norm':
return lambda pairs: sorted(pairs, key=sort_by_norm(env))
elif sorter == 'permute':
return random_permute
elif sorter == 'none':
return no_sort
elif sorter == 'group':
return multdim_sort
else:
raise Exception('unknown sorter')
# it does not make sense to compare array RQMC in cumulative case, since it treated all trajectories together, but let's see what happen
def compare_cost(args):
set_seed(args.seed)
env = LQR(
#N=20,
#M=12,
init_scale=1.0,
max_steps=args.H, # 10, 20
Sigma_s_kappa=1.0,
Q_kappa=1.0,
P_kappa=1.0,
A_norm=1.0,
B_norm=1.0,
Sigma_s_scale=0.0,
)
K = env.optimal_controller()
mean_network = nn.Linear(*K.shape[::-1], bias=False)
mean_network.weight.data = tensor(K)
policy = GaussianPolicy(*K.shape[::-1], mean_network, learn_std=False, gate_output=False)
# mc
mc_costs = [] # individual
mc_means = [] # cumulative
for i in tqdm(range(args.n_trajs), 'mc'):
noises = np.random.randn(env.max_steps, env.M)
_, _, rewards, _, _ = rollout(env, policy, noises)
mc_costs.append(-rewards.sum())
mc_means.append(np.mean(mc_costs))
# rqmc
rqmc_costs = []
rqmc_means = []
rqmc_noises = get_rqmc_noises(args.n_trajs, env.max_steps, env.M, 'trajwise')
for i in tqdm(range(args.n_trajs), 'rqmc'):
_, _, rewards, _, _ = rollout(env, policy, rqmc_noises[i])
rqmc_costs.append(-rewards.sum())
rqmc_means.append(np.mean(rqmc_costs))
# array rqmc
arqmc_costs_dict = {}
arqmc_means_dict = {}
arqmc_noises = get_rqmc_noises(args.n_trajs, env.max_steps, env.M, 'ssj')
#arqmc_noises = get_rqmc_noises(args.n_trajs, env.max_steps, env.M, 'array')
for sorter in args.sorter:
arqmc_costs = []
arqmc_means = []
sort_f = get_sorter(sorter, env)
data = ArrayRQMCSampler(env, args.n_trajs, sort_f=sort_f).sample(policy, arqmc_noises)
for traj in data:
rewards = np.asarray(traj['rewards'])
arqmc_costs.append(-rewards.sum())
arqmc_means.append(np.mean(arqmc_costs))
arqmc_costs_dict[sorter] = arqmc_costs
arqmc_means_dict[sorter] = arqmc_means
expected_cost = env.expected_cost(K, np.diag(np.ones(env.M)))
mc_errors = np.abs(mc_means - expected_cost)
rqmc_errors = np.abs(rqmc_means - expected_cost)
arqmc_errors_dict = {sorter: np.abs(arqmc_means - expected_cost) for sorter, arqmc_means in arqmc_means_dict.items()}
logger.info('mc: {}, rqmc: {} '.format(mc_errors[-1], rqmc_errors[-1]) + \
' '.join(['arqmc ({}): {}'.format(sorter, arqmc_errors[-1]) for sorter, arqmc_errors in arqmc_errors_dict.items()]))
info = {**vars(args), 'mc_costs': mc_costs, 'rqmc_costs': rqmc_costs, 'arqmc_costs': arqmc_costs}
if args.save_fn is not None:
with open(args.save_fn, 'wb') as f:
dill.dump(dict(mc_errors=mc_errors, rqmc_errors=rqmc_errors, arqmc_errors_dict=arqmc_errors_dict, info=info), f)
if args.show_fig:
data = pd.concat([
pd.DataFrame({
'name': 'mc',
'x': np.arange(len(mc_errors)),
'error': mc_errors,
}),
pd.DataFrame({
'name': 'rqmc',
'x': np.arange(len(rqmc_errors)),
'error': rqmc_errors,
}),
pd.concat([
pd.DataFrame({
'name': 'arqmc_{}'.format(sorter),
'x': np.arange(len(arqmc_errors)),
'error': arqmc_errors,
})
for sorter, arqmc_errors in arqmc_errors_dict.items()
]),
])
plot = sns.lineplot(x='x', y='error', hue='name', data=data)
plot.set(yscale='log')
plt.show()
return mc_errors, rqmc_errors, arqmc_errors_dict, info
def compare_grad(args):
set_seed(args.seed)
env = LQR(
N=args.xu_dim[0],
M=args.xu_dim[1],
lims=100,
init_scale=1.0,
max_steps=args.H,
Sigma_s_kappa=1.0,
Q_kappa=1.0,
P_kappa=1.0,
A_norm=1.0,
B_norm=1.0,
Sigma_s_scale=args.noise,
)
#K = env.optimal_controller()
K = np.random.randn(env.M, env.N)
mean_network = nn.Linear(*K.shape[::-1], bias=False)
mean_network.weight.data = tensor(K)
policy = GaussianPolicy(*K.shape[::-1], mean_network, learn_std=False, gate_output=False)
out_set = set() # here
Sigma_a = np.diag(np.ones(env.M))
mc_grads = []
for i in tqdm(range(args.n_trajs), 'mc'):
noises = np.random.randn(env.max_steps, env.M)
states, actions, rewards, _, _ = rollout(env, policy, noises)
if len(states) < args.H:
out_set.add('mc')
break
mc_grads.append(get_gaussian_policy_gradient(states, actions, rewards, policy, variance_reduced_loss))
mc_grads = np.asarray(mc_grads)
mc_means = np.cumsum(mc_grads, axis=0) / np.arange(1, len(mc_grads) + 1)[:, np.newaxis, np.newaxis]
rqmc_grads = []
#loc = torch.zeros(env.max_steps * env.M)
#scale = torch.ones(env.max_steps * env.M)
#rqmc_noises = Normal_RQMC(loc, scale).sample(torch.Size([args.n_trajs])).data.numpy()
rqmc_noises = uniform2normal(
random_shift(
ssj_uniform(
args.n_trajs,
args.H * env.M,
).reshape(args.n_trajs, args.H, env.M),
0,
)
)
for i in tqdm(range(args.n_trajs), 'rqmc'):
states, actions, rewards, _, _ = rollout(env, policy, rqmc_noises[i].reshape(env.max_steps, env.M))
if len(states) < args.H:
out_set.add('rqmc')
break
rqmc_grads.append(get_gaussian_policy_gradient(states, actions, rewards, policy, variance_reduced_loss))
rqmc_grads = np.asarray(rqmc_grads)
rqmc_means = np.cumsum(rqmc_grads, axis=0) / np.arange(1, len(rqmc_grads) + 1)[:, np.newaxis, np.newaxis]
arqmc_means_dict = {}
#arqmc_noises = get_rqmc_noises(args.n_trajs, args.H, env.M, 'array')
uniform_noises = ssj_uniform(args.n_trajs, env.M) # n_trajs , action_dim
arqmc_noises = uniform2normal(
random_shift(np.expand_dims(uniform_noises, 1).repeat(args.H, 1), 0)) # n_trajs, horizon, action_dim
for sorter in args.sorter:
arqmc_grads = []
sort_f = get_sorter(sorter, env, K)
data = ArrayRQMCSampler(env, args.n_trajs, sort_f=sort_f).sample(policy, arqmc_noises)
for traj in data:
states, actions, rewards = np.asarray(traj['states']), np.asarray(traj['actions']), np.asarray(traj['rewards'])
if len(states) < args.H:
out_set.add('arqmc_{}'.format(sorter))
break
arqmc_grads.append(get_gaussian_policy_gradient(states, actions, rewards, policy, variance_reduced_loss))
arqmc_grads = np.asarray(arqmc_grads)
arqmc_means = np.cumsum(arqmc_grads, axis=0) / np.arange(1, len(arqmc_grads) + 1)[:, np.newaxis, np.newaxis]
arqmc_means_dict[sorter] = arqmc_means
expected_grad = env.expected_policy_gradient(K, Sigma_a)
mc_errors = [np.nan] if 'mc' in out_set else ((mc_means - expected_grad) ** 2).reshape(mc_means.shape[0], -1).mean(1) # why the sign is reversed?
rqmc_errors = [np.nan] if 'rqmc' in out_set else ((rqmc_means - expected_grad) ** 2).reshape(rqmc_means.shape[0], -1).mean(1)
arqmc_errors_dict = {
sorter: [np.nan] if 'arqmc_{}'.format(sorter) in out_set else ((arqmc_means - expected_grad) ** 2).reshape(arqmc_means.shape[0], -1).mean(1)
for sorter, arqmc_means in arqmc_means_dict.items()
}
info = {
**vars(args),
'out': out_set,
'expected_grad': expected_grad,
'means': {
'mc': mc_means,
'rqmc': rqmc_means,
**arqmc_means_dict,
},
}
if args.save_fn is not None:
with open(save_fn, 'wb') as f:
dill.dump(dict(mc_errors=mc_errors, rqmc_errors=rqmc_errors, arqmc_errors_dict=arqmc_errors_dict, info=info), f)
if args.show_fig:
mc_data = pd.DataFrame({
'name': 'mc',
'x': np.arange(len(mc_errors)),
'error': mc_errors,
})
rqmc_data = pd.DataFrame({
'name': 'rqmc',
'x': np.arange(len(rqmc_errors)),
'error': rqmc_errors,
})
arqmc_data = pd.concat([
pd.DataFrame({
'name': 'arqmc_{}'.format(sorter),
'x': np.arange(len(arqmc_errors)),
'error': arqmc_errors,
})
for sorter, arqmc_errors in arqmc_errors_dict.items()
])
plot = sns.lineplot(x='x', y='error', hue='name', data=pd.concat([mc_data, rqmc_data, arqmc_data]))
plot.set(yscale='log')
plt.show()
return mc_errors, rqmc_errors, arqmc_errors_dict, info
def learning(args):
set_seed(args.seed)
env = get_env(args)
if Config.DEVICE.type == 'cpu':
#sampler = MPSampler(env, args.n_workers) # mp
sampler = SeqSampler(env) # sequential
else:
sampler = VecSampler(env, args.n_trajs) # a simplied version where the number of workers == the number of trajs
sort_f = get_sorter(args.sorter[0], env)
arqmc_sampler = ArrayRQMCSampler(env, args.n_trajs, sort_f=sort_f)
init_policy = get_policy(args, env)
out_set = set()
def train(name, loss_fn, init_policy, noise_type='mc', n_iters=None):
if n_iters is None: n_iters = args.n_iters
policy = copy.deepcopy(init_policy)
optim = torch.optim.SGD(policy.parameters(), args.lr)
all_returns = []
prog = trange(n_iters, desc=name)
N = env.observation_space.shape[0]
M = env.action_space.shape[0]
for _ in prog:
if name in out_set:
all_returns.append(np.nan)
continue
returns = []
qs = [] # the estimated q value
loss = [] # policy gradient loss
if noise_type == 'mc':
noises = np.random.randn(args.n_trajs, env.max_steps, M)
elif noise_type == 'rqmc':
noises = get_rqmc_noises(args.n_trajs, env.max_steps, M, 'trajwise')
elif noise_type == 'arqmc':
noises = get_rqmc_noises(args.n_trajs, env.max_steps, M, 'array')
else:
raise Exception('unknown sequence type')
if noise_type in ['mc', 'rqmc']:
data = sampler.sample(policy, noises)
elif noise_type == 'arqmc':
data = arqmc_sampler.sample(policy, noises)
if isinstance(data[0], dict): # from arrayrqmcsampler
data = [(np.asarray(d['states']), np.asarray(d['actions']), np.asarray(d['rewards'])) for d in data]
for traj in data:
states, actions, rewards = traj[:3]
if len(states) != args.H and args.env in LQR_ENVS:
out_set.add(name)
break
qs.append(rewards[::-1].cumsum()[::-1].copy())
returns.append(qs[-1][0])
if name in out_set: continue # speedup
optim.zero_grad()
states, actions, qs = list(zip(*data))[:3] # list of list
states, actions, qs = np.concatenate(states), np.concatenate(actions), np.concatenate(qs) # the whole list
loss = loss_fn(states, actions, qs, policy)
loss.backward()
optim.step()
all_returns.append(np.mean(returns))
prog.set_postfix(ret=all_returns[-1])
return np.asarray(all_returns)
results = {}
if 'gt' in args.algos:
assert args.fix_std, 'gt can only work with fix std'
results['gt'] = train('gt', lqr_gt_loss(env), init_policy, noise_type='mc')
if 'mc' in args.algos: results['mc'] = train('mc', variance_reduced_loss, init_policy, noise_type='mc')
if 'rqmc' in args.algos: results['rqmc'] = train('rqmc', variance_reduced_loss, init_policy, noise_type='rqmc')
if 'arqmc' in args.algos: results['arqmc'] = train('arqmc', variance_reduced_loss, init_policy, noise_type='arqmc')
if args.env in LQR_ENVS:
optimal_args = argparse.Namespace(**{**vars(args), 'init_policy': 'optimal'})
results['optimal'] = train('optimal', no_loss, get_policy(optimal_args, env), n_iters=1).repeat(args.n_iters)
if args.show_fig or args.save_fig is not None:
valid_results = {k: v for k, v in results.items() if k not in out_set}
costs = pd.concat([pd.DataFrame({'name': name, 'x': np.arange(len(rs)), 'cost': -rs}) for name, rs in valid_results.items()])
plot = sns.lineplot(x='x', y='cost', hue='name', data=costs)
plt.yscale('log')
if args.save_fig:
plt.savefig(args.save_fig)
if args.show_fig:
plt.show()
info = {**vars(args), 'out': out_set}
return results, info
def main(args=None):
args = parse_args(args)
select_device(0 if torch.cuda.is_available() and not args.cpu else -1)
#select_device(-1)
logger.prog('device: {}'.format(Config.DEVICE))
if args.task == 'learn':
exp_f = learning
elif args.task == 'cost':
exp_f = compare_cost
elif args.task == 'grad':
exp_f = compare_grad
else:
raise Exception('unsupported task')
if args.post_f is not None:
post_f = lambda results: getattr(postprocess, args.post_f)(args, results)
else: post_f = None
if args.mode == 'single':
exp_f(args)
elif args.mode == 'seeds':
running_seeds(args.save_fn, exp_f, argparse.Namespace(**vars(args)), args.n_seeds, post_f=post_f)
elif args.mode == 'collect':
assert args.task in ['grad', 'learn']
success_f = lambda result: len(result[-1]['out']) == 0
collect_seeds(args.save_fn, exp_f, args, success_f=success_f, n_seeds=args.n_seeds, max_seed=args.max_seed, post_f=post_f)
if __name__ == '__main__':
exps.run_one_exp(main)