-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
51 lines (41 loc) · 1.63 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from fastapi import FastAPI
from pydantic import BaseModel
import utils
from pathlib import Path
from dotenv import load_dotenv
import os
import logging
from opencensus.ext.azure.log_exporter import AzureLogHandler
dotenv_path = Path(__file__).resolve().parent / 'fastapi.env'
load_dotenv(dotenv_path=dotenv_path)
app = FastAPI()
logger = logging.getLogger(__name__)
logger.setLevel(10)
logger.addHandler(AzureLogHandler(connection_string="InstrumentationKey={}".format(os.getenv('INSTRUMENTATIONKEY'))))
headers = {
"Ocp-Apim-Subscription-Key": os.getenv('APIKEY'),
"Content-Type": "application/json",
"Accept": "application/json"
}
class Model(BaseModel):
text_to_analyze: list
@ app.post("/")
def analyze_text(text: Model):
response = {"sentiment": [], "keyphrases": []}
no_of_text = len(text.text_to_analyze)
for i in range(no_of_text):
document = {"documents": [{"id": i+1, "language": "en", "text": text.text_to_analyze[i]}]}
sentiment = utils.call_text_analytics_api(headers, document, endpoint='sentiment')
keyphrases = utils.call_text_analytics_api(headers, document, endpoint='keyPhrases')
log_data = {
"custom_dimensions":
{
"text": text.text_to_analyze[i],
"text_sentiment": sentiment["documents"][0]["sentiment"],
"text_keyphrases": keyphrases["documents"][0]["keyPhrases"]
}
}
logger.info('Text Processed Succesfully', extra=log_data)
response["sentiment"].append(sentiment["documents"][0])
response["keyphrases"].append(keyphrases["documents"][0])
return response