|
| 1 | +// Time: O(n^3) |
| 2 | +// Space: O(n^2) |
| 3 | + |
| 4 | +// weighted bipartite matching solution |
| 5 | +class Solution { |
| 6 | +public: |
| 7 | + int minimumXORSum(vector<int>& nums1, vector<int>& nums2) { |
| 8 | + vector<vector<int>> adj(size(nums1), vector<int>(size(nums2))); |
| 9 | + for (int i = 0; i < size(nums1); ++i) { |
| 10 | + for (int j = 0; j < size(nums2); ++j) { |
| 11 | + adj[i][j] = nums1[i] ^ nums2[j]; |
| 12 | + } |
| 13 | + } |
| 14 | + return hungarian(adj).first; |
| 15 | + } |
| 16 | + |
| 17 | +private: |
| 18 | + // Template modified from: |
| 19 | + // https://github.com/kth-competitive-programming/kactl/blob/main/content/graph/WeightedMatching.h |
| 20 | + pair<int, vector<int>> hungarian(const vector<vector<int>> &a) { // Time: O(n^2 * m), Space: O(n + m) |
| 21 | + if (a.empty()) return {0, {}}; |
| 22 | + int n = size(a) + 1, m = size(a[0]) + 1; |
| 23 | + vector<int> u(n), v(m), p(m), ans(n - 1); |
| 24 | + for (int i = 1; i < n; ++i) { |
| 25 | + p[0] = i; |
| 26 | + int j0 = 0; // add "dummy" worker 0 |
| 27 | + vector<int> dist(m, numeric_limits<int>::max()), pre(m, -1); |
| 28 | + vector<bool> done(m + 1); |
| 29 | + do { // dijkstra |
| 30 | + done[j0] = true; |
| 31 | + int i0 = p[j0], j1, delta = numeric_limits<int>::max(); |
| 32 | + for (int j = 1; j < m; ++j) { |
| 33 | + if (!done[j]) { |
| 34 | + auto cur = a[i0 - 1][j - 1] - u[i0] - v[j]; |
| 35 | + if (cur < dist[j]) dist[j] = cur, pre[j] = j0; |
| 36 | + if (dist[j] < delta) delta = dist[j], j1 = j; |
| 37 | + } |
| 38 | + } |
| 39 | + for (int j = 0; j < m; ++j) { |
| 40 | + if (done[j]) u[p[j]] += delta, v[j] -= delta; |
| 41 | + else dist[j] -= delta; |
| 42 | + } |
| 43 | + j0 = j1; |
| 44 | + } while (p[j0]); |
| 45 | + while (j0) { // update alternating path |
| 46 | + int j1 = pre[j0]; |
| 47 | + p[j0] = p[j1], j0 = j1; |
| 48 | + } |
| 49 | + } |
| 50 | + for (int j = 1; j < m; ++j) if (p[j]) ans[p[j] - 1] = j - 1; |
| 51 | + return {-v[0], ans}; // min cost |
| 52 | + } |
| 53 | +}; |
| 54 | + |
| 55 | +// Time: O(n * 2^n) |
| 56 | +// Space: O(2^n) |
| 57 | +// dp solution |
| 58 | +class Solution2 { |
| 59 | +public: |
| 60 | + int minimumXORSum(vector<int>& nums1, vector<int>& nums2) { |
| 61 | + vector<pair<int, int>> dp(1 << size(nums2), {numeric_limits<int>::max(), numeric_limits<int>::max()}); |
| 62 | + dp[0] = {0, 0}; |
| 63 | + for (int mask = 0; mask < size(dp); ++mask) { |
| 64 | + for (int i = 0, bit = 1; i < size(nums2); ++i, bit <<= 1) { |
| 65 | + if ((mask & bit) == 0) { |
| 66 | + dp[mask | bit] = min(dp[mask | bit], {dp[mask].first + (nums1[dp[mask].second] ^ nums2[i]), dp[mask].second + 1}); |
| 67 | + } |
| 68 | + } |
| 69 | + } |
| 70 | + return dp.back().first; |
| 71 | + } |
| 72 | +}; |
0 commit comments