-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathmatch_state.py
145 lines (119 loc) · 4.72 KB
/
match_state.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import torch
import data as Data
import model as Model
import argparse
import logging
import core.logger as Logger
import core.metrics as Metrics
import os
import numpy as np
import scipy.stats as stats
from matplotlib import pyplot as plt
from functools import partial
from scipy.stats import norm
import math
from tqdm import tqdm
class Object:
def __init__(self, config):
self.config = config
self.phase = 'train'
self.gpu_ids = None
self.debug = False
def _rev_warmup_beta(linear_start, linear_end, n_timestep, warmup_frac):
betas = linear_start * np.ones(n_timestep, dtype=np.float64)
warmup_time = int(n_timestep * warmup_frac)
betas[n_timestep - warmup_time:] = np.linspace(
linear_start, linear_end, warmup_time, dtype=np.float64)
return betas
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default='config/sr_sr3_16_128.json',
help='JSON file for configuration')
parser.add_argument('-p', '--phase', type=str, choices=['train', 'val'],
help='Run either train(training) or val(generation)', default='train')
parser.add_argument('-gpu', '--gpu_ids', type=str, default=None)
parser.add_argument('--debug', action='store_true')
# parse configs
args = parser.parse_args()
opt = Logger.parse(args)
# Convert to NoneDict, which return None for missing key.
opt = Logger.dict_to_nonedict(opt)
# logging
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
Logger.setup_logger(None, opt['path']['log'],
'train', level=logging.INFO, screen=True)
Logger.setup_logger('val', opt['path']['log'], 'val', level=logging.INFO)
logger = logging.getLogger('base')
logger.info('[Stage 2] Markov chain state matching!')
# dataset
for phase, dataset_opt in opt['datasets'].items():
dataset_opt['initial_stage_file'] = None
if phase == 'train' and args.phase != 'val':
train_set = Data.create_dataset(dataset_opt, phase)
train_loader = Data.create_dataloader(
train_set, dataset_opt, phase)
elif phase == 'val':
dataset_opt['val_volume_idx'] = 'all'
dataset_opt['val_slice_idx'] = 'all'
val_set = Data.create_dataset(dataset_opt, phase)
val_loader = Data.create_dataloader(
val_set, dataset_opt, phase)
logger.info('Initial Dataset Finished')
# model
trainer = Model.create_noise_model(opt)
logger.info('Load Model Finished')
#######
to_torch = partial(torch.tensor, dtype=torch.float32, device='cuda:0')
betas = _rev_warmup_beta(opt['noise_model']['beta_schedule']['linear_start'], opt['noise_model']['beta_schedule']['linear_end'],
1000, 0.7)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
sqrt_alphas_cumprod_prev_np = np.sqrt(
np.append(1., alphas_cumprod))
sqrt_alphas_cumprod_prev = to_torch(np.sqrt(
np.append(1., alphas_cumprod)))
trainer.netG.eval()
idx = 0
stage_file = open(opt['stage2_file'],'w+')
for _, data in tqdm(enumerate(val_loader)):
idx += 1
data = trainer.set_device(data)
denoised = trainer.netG.denoise(data)
max_lh = -1
max_t = -1
min_lh = 999
min_t = -1
prev_diff = 999.
for t in range(sqrt_alphas_cumprod_prev.shape[0]): # linear search with early stopping
noise = data['X'] - sqrt_alphas_cumprod_prev[t] * denoised
noise_mean = torch.mean(noise)
noise = noise - noise_mean
mu, std = norm.fit(noise.cpu().numpy())
diff = np.abs((1 - sqrt_alphas_cumprod_prev[t]**2).sqrt().cpu().numpy() - std)
#print(mu, std, (1 - sqrt_alphas_cumprod_prev[t]**2).sqrt(), diff)
if diff < min_lh:
min_lh = diff
min_t = t
if diff > prev_diff:
break # find a match!
else:
prev_diff = diff
if idx == 30 and args.debug:
noise = torch.randn_like(denoised)
result = sqrt_alphas_cumprod_prev[min_t] * denoised.detach() + (1. - sqrt_alphas_cumprod_prev[min_t]**2).sqrt() * noise
denoised_np = denoised.detach().cpu().numpy()[0,0]
input_np = data['X'].detach().cpu().numpy()[0,0]
result_np = result.detach().cpu().numpy()[0,0]
result_np = (result_np + 1.) / 2.
input_np = (input_np + 1.) / 2.
plt.imshow(np.hstack((input_np, result_np, denoised_np)), cmap='gray')
plt.show()
print(min_t, np.max(result_np), np.min(result_np))
break
volume_idx = (idx - 1) // val_set.raw_data.shape[-2]
slice_idx = (idx - 1) % val_set.raw_data.shape[-2]
#min_t = 500
stage_file.write('%d_%d_%d\n' % (volume_idx, slice_idx, min_t))
stage_file.close()
print('done!')