-
Notifications
You must be signed in to change notification settings - Fork 15
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Evaluation on benchmarks after training. #24
Comments
You can use evaluator provided by MoE-PEFT. |
Hi, I also meet some errors when trying to reproduce the result of eight multi-task results.
python ./launch.py run --base_model /nfsdat/home/bzzhangslm/model/LLM-Research/Meta-Llama-3___1-8B-Instruct --config moe_peft.json
[2025-02-27 21:21:04,031] MoE-PEFT: NVIDIA CUDA initialized successfully.
[2025-02-27 21:21:04,035] MoE-PEFT: Initializing pre-trained model.
[2025-02-27 21:21:04,035] MoE-PEFT: Loading model with half precision.
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 4/4 [00:09<00:00, 2.29s/it]
[2025-02-27 21:21:13,637] MoE-PEFT: Use eager as attention implementation.
[2025-02-27 21:21:13,932] MoE-PEFT: Detecting <pad> is None, setting to <eos> by default.
[2025-02-27 21:21:14,180] MoE-PEFT: Using efficient operators.
[2025-02-27 21:21:14,182] MoE-PEFT: mixlora_0 total trainable params: 241172480
[2025-02-27 21:21:14,183] MoE-PEFT: mixlora_0 total trainable params (except gates): 240123904
[2025-02-27 21:21:15,165] MoE-PEFT: Preparing data for 7 tasks
[2025-02-27 21:21:23,069] MoE-PEFT: Preparing data for ARC-Challenge
[2025-02-27 21:21:28,187] MoE-PEFT: Preparing data for ARC-Easy
[2025-02-27 21:21:33,871] MoE-PEFT: Preparing data for BoolQ
[2025-02-27 21:21:41,593] MoE-PEFT: Preparing data for OpenBookQA
README.md: 6.81kB [00:00, 14.6MB/s]
Traceback (most recent call last):
File "/nfsdat/home/bzzhangslm/llm/MoS/MoE-PEFT/moe_peft.py", line 291, in <module>
moe_peft.train(
File "/nfsdat/home/bzzhangslm/llm/MoS/MoE-PEFT/moe_peft/trainer.py", line 312, in train
input_args = dispatcher.get_train_data()
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/nfsdat/home/bzzhangslm/llm/MoS/MoE-PEFT/moe_peft/dispatcher.py", line 290, in get_train_data
self.__dispatch_task_in()
File "/nfsdat/home/bzzhangslm/llm/MoS/MoE-PEFT/moe_peft/dispatcher.py", line 271, in __dispatch_task_in
task.load_data()
File "/nfsdat/home/bzzhangslm/llm/MoS/MoE-PEFT/moe_peft/dispatcher.py", line 85, in load_data
self.train_token_data_ = self.dataload_function_(self.tokenizer_)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/nfsdat/home/bzzhangslm/llm/MoS/MoE-PEFT/moe_peft/trainer.py", line 79, in _dataload_fn
data = self.task_.loading_data(True, self.data_path)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/nfsdat/home/bzzhangslm/llm/MoS/MoE-PEFT/moe_peft/tasks/common.py", line 199, in loading_data
data.extend(task.loading_data(is_train, None if len(path) == 0 else path))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/nfsdat/home/bzzhangslm/llm/MoS/MoE-PEFT/moe_peft/tasks/qa_tasks.py", line 158, in loading_data
data = hf_datasets.load_dataset(
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/nfsdat/home/bzzhangslm/miniconda3/envs/moe_peft/lib/python3.12/site-packages/datasets/load.py", line 2129, in load_dataset
builder_instance = load_dataset_builder(
^^^^^^^^^^^^^^^^^^^^^
File "/nfsdat/home/bzzhangslm/miniconda3/envs/moe_peft/lib/python3.12/site-packages/datasets/load.py", line 1886, in load_dataset_builder
builder_instance: DatasetBuilder = builder_cls(
^^^^^^^^^^^^
TypeError: 'NoneType' object is not callable
Are the |
It seems like your environment issues. The last error was triggered by |
Thanks! I have solved the env problem. But I still have questions about the dataset loading and the evaluation after training. (2) still cannot figure out how to eval (including the existing 8 datasets and maybe other glue/math data). Could you please provide some example commands? |
|
Thanks for your reply! I started to try to train on GLUE ( also built in python ./launch.py gen --template mixlora --tasks "glue:cola;glue:mrpc;glue:rte" --multi_task True --adapter_name mixlora --num_epochs 3 --batch_size 4 --micro_batch_size 1 --learning_rate 3e-4 --cutoff_len 512
python ./launch.py run --base_model model/LLM-Research/Meta-Llama-3___1-8B-Instruct [2025-03-01 21:11:30,312] MoE-PEFT: Encode text data: 0/14709
[2025-03-01 21:11:30,789] MoE-PEFT: Encode text data: 10000/14709
[2025-03-01 21:11:31,820] MoE-PEFT: Max train tokens length: 290/512
[2025-03-01 21:11:31,833] MoE-PEFT: Loading training task mixlora_0
[2025-03-01 21:11:31,834] MoE-PEFT: mixlora_0 train data:
[2025-03-01 21:11:31,834] MoE-PEFT: epoch: 1/3 step in epoch: 0/14709
Traceback (most recent call last):
File "/nfsdat/home/bzzhangslm/llm/MoS/MoE-PEFT/moe_peft.py", line 293, in <module>
moe_peft.train(
File "/nfsdat/home/bzzhangslm/llm/MoS/MoE-PEFT/moe_peft/trainer.py", line 314, in train
outputs = model.forward(input_args)
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/nfsdat/home/bzzhangslm/llm/MoS/MoE-PEFT/moe_peft/model.py", line 497, in forward
output_data.loss = output_data.loss_fn_(
^^^^^^^^^^^^^^^^^^^^^
File "/nfsdat/home/bzzhangslm/llm/MoS/MoE-PEFT/moe_peft/model.py", line 67, in loss
return loss_fn(
^^^^^^^^
File "/nfsdat/home/bzzhangslm/miniconda3/envs/moe_peft/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/nfsdat/home/bzzhangslm/miniconda3/envs/moe_peft/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/nfsdat/home/bzzhangslm/miniconda3/envs/moe_peft/lib/python3.12/site-packages/torch/nn/modules/loss.py", line 1293, in forward
return F.cross_entropy(
^^^^^^^^^^^^^^^^
File "/nfsdat/home/bzzhangslm/miniconda3/envs/moe_peft/lib/python3.12/site-packages/torch/nn/functional.py", line 3479, in cross_entropy
return torch._C._nn.cross_entropy_loss(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ValueError: Expected input batch_size (7) to match target batch_size (0). Did I get anything wrong? |
GLUE tasks currently can't run with multi-task mode :) |
Does there exist or could you provide a bash script or a python function for evaluating trained model on commonsense datasets (such as ARC-Easy openbookqa social_i_qa ARC-Challenge winogrande piqa boolq hellaswag) or other datasets?
The text was updated successfully, but these errors were encountered: