Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Questions about the amount of fine-tunable parameters #27

Open
kaicheng001 opened this issue Mar 24, 2025 · 0 comments
Open

Questions about the amount of fine-tunable parameters #27

kaicheng001 opened this issue Mar 24, 2025 · 0 comments

Comments

@kaicheng001
Copy link

Hello, author, first of all, thank you for your MoE-PEFT contact work. I encountered a problem when fine-tuning with your MoE-PEFT. The moe_peft.json configuration I used is as follows:

{
    "cutoff_len": 2048,
    "save_strategy": "epoch",
    "train_lora_candidate_num": 2,
    "train_lora_simultaneously_num": 2,
    "train_strategy": "optim",
    "lora": [
        {
            "name": "expert_0_name",
            "task_name": "expert_0",
            "optim": "adamw",
            "scheduler_type": "constant",
            "warmup_steps": 0,
            "lr": 0.0002,
            "batch_size": 1,
            "micro_batch_size": 1,
            "evaluate_batch_size": 1,
            "num_epochs": 3,
            "r": 4,
            "lora_alpha": 16,
            "lora_dropout": 0.05,
            "target_modules": {
                "q_proj": false,
                "k_proj": false,
                "v_proj": false,
                "o_proj": false,
                "gate_proj": true,
                "down_proj": false,
                "up_proj": false
            },
            "routing_strategy": "mixlora",
            "num_experts": 7,
            "top_k": 2,
            "group_by_length": false
        },
        {
            "name": "expert_1_name",
            "task_name": "expert_1",
            "optim": "adamw",
            "scheduler_type": "constant",
            "warmup_steps": 0,
            "lr": 0.0002,
            "batch_size": 1,
            "micro_batch_size": 1,
            "evaluate_batch_size": 1,
            "num_epochs": 3,
            "r": 4,
            "lora_alpha": 16,
            "lora_dropout": 0.05,
            "target_modules": {
                "q_proj": false,
                "k_proj": false,
                "v_proj": false,
                "o_proj": false,
                "gate_proj": true,
                "down_proj": false,
                "up_proj": false
            },
            "routing_strategy": "mixlora",
            "num_experts": 7,
            "top_k": 2,
            "group_by_length": false
        },
        {
            "name": "expert_2_name",
            "task_name": "expert_2",
            "optim": "adamw",
            "scheduler_type": "constant",
            "warmup_steps": 0,
            "lr": 0.0002,
            "batch_size": 1,
            "micro_batch_size": 1,
            "evaluate_batch_size": 1,
            "num_epochs": 3,
            "r": 4,
            "lora_alpha": 16,
            "lora_dropout": 0.05,
            "target_modules": {
                "q_proj": false,
                "k_proj": false,
                "v_proj": false,
                "o_proj": false,
                "gate_proj": true,
                "down_proj": false,
                "up_proj": false
            },
            "routing_strategy": "mixlora",
            "num_experts": 7,
            "top_k": 2,
            "group_by_length": false
        },
        {
            "name": "expert_3_name",
            "task_name": "expert_3",
            "optim": "adamw",
            "scheduler_type": "constant",
            "warmup_steps": 0,
            "lr": 0.0002,
            "batch_size": 1,
            "micro_batch_size": 1,
            "evaluate_batch_size": 1,
            "num_epochs": 3,
            "r": 4,
            "lora_alpha": 16,
            "lora_dropout": 0.05,
            "target_modules": {
                "q_proj": false,
                "k_proj": false,
                "v_proj": false,
                "o_proj": false,
                "gate_proj": true,
                "down_proj": false,
                "up_proj": false
            },
            "routing_strategy": "mixlora",
            "num_experts": 7,
            "top_k": 2,
            "group_by_length": false
        },
        {
            "name": "expert_4_name",
            "task_name": "expert_4",
            "optim": "adamw",
            "scheduler_type": "constant",
            "warmup_steps": 0,
            "lr": 0.0002,
            "batch_size": 1,
            "micro_batch_size": 1,
            "evaluate_batch_size": 1,
            "num_epochs": 3,
            "r": 4,
            "lora_alpha": 16,
            "lora_dropout": 0.05,
            "target_modules": {
                "q_proj": false,
                "k_proj": false,
                "v_proj": false,
                "o_proj": false,
                "gate_proj": true,
                "down_proj": false,
                "up_proj": false
            },
            "routing_strategy": "mixlora",
            "num_experts": 7,
            "top_k": 2,
            "group_by_length": false
        },
        {
            "name": "expert_5_name",
            "task_name": "expert_5",
            "optim": "adamw",
            "scheduler_type": "constant",
            "warmup_steps": 0,
            "lr": 0.0002,
            "batch_size": 1,
            "micro_batch_size": 1,
            "evaluate_batch_size": 1,
            "num_epochs": 3,
            "r": 4,
            "lora_alpha": 16,
            "lora_dropout": 0.05,
            "target_modules": {
                "q_proj": false,
                "k_proj": false,
                "v_proj": false,
                "o_proj": false,
                "gate_proj": true,
                "down_proj": false,
                "up_proj": false
            },
            "routing_strategy": "mixlora",
            "num_experts": 7,
            "top_k": 2,
            "group_by_length": false
        },
        {
            "name": "expert_6_name",
            "task_name": "expert_6",
            "optim": "adamw",
            "scheduler_type": "constant",
            "warmup_steps": 0,
            "lr": 0.0002,
            "batch_size": 1,
            "micro_batch_size": 1,
            "evaluate_batch_size": 1,
            "num_epochs": 3,
            "r": 4,
            "lora_alpha": 16,
            "lora_dropout": 0.05,
            "target_modules": {
                "q_proj": false,
                "k_proj": false,
                "v_proj": false,
                "o_proj": false,
                "gate_proj": true,
                "down_proj": false,
                "up_proj": false
            },
            "routing_strategy": "mixlora",
            "num_experts": 7,
            "top_k": 2,
            "group_by_length": false
        }
    ]
}

The model I chose is Meta-Llama-3-8B-Instruct, I printed the output of the model's trainable parameters as follows:

===== LoRA LAYER TYPE STATISTICS FOR expert_0_name =====
FFN: 17,432,576 parameters (100.00%)
Attention: 0 parameters (0.00%)
Other: 0 parameters (0.00%)
LoRA Total Parameters: 17,432,576
LoRA Rank: 4
LoRA Alpha: 16
Target Modules: ['gate_proj']

===== LoRA LAYER TYPE STATISTICS FOR expert_1_name =====
FFN: 17,432,576 parameters (100.00%)
Attention: 0 parameters (0.00%)
Other: 0 parameters (0.00%)
LoRA Total Parameters: 17,432,576
LoRA Rank: 4
LoRA Alpha: 16
Target Modules: ['gate_proj']

===== LoRA LAYER TYPE STATISTICS FOR expert_2_name =====
FFN: 17,432,576 parameters (100.00%)
Attention: 0 parameters (0.00%)
Other: 0 parameters (0.00%)
LoRA Total Parameters: 17,432,576
LoRA Rank: 4
LoRA Alpha: 16
Target Modules: ['gate_proj']

===== LoRA LAYER TYPE STATISTICS FOR expert_3_name =====
FFN: 17,432,576 parameters (100.00%)
Attention: 0 parameters (0.00%)
Other: 0 parameters (0.00%)
LoRA Total Parameters: 17,432,576
LoRA Rank: 4
LoRA Alpha: 16
Target Modules: ['gate_proj']

===== LoRA LAYER TYPE STATISTICS FOR expert_4_name =====
FFN: 17,432,576 parameters (100.00%)
Attention: 0 parameters (0.00%)
Other: 0 parameters (0.00%)
LoRA Total Parameters: 17,432,576
LoRA Rank: 4
LoRA Alpha: 16
Target Modules: ['gate_proj']


===== LoRA LAYER TYPE STATISTICS FOR expert_5_name =====
FFN: 17,432,576 parameters (100.00%)
Attention: 0 parameters (0.00%)
Other: 0 parameters (0.00%)
LoRA Total Parameters: 17,432,576
LoRA Rank: 4
LoRA Alpha: 16
Target Modules: ['gate_proj']

===== LoRA LAYER TYPE STATISTICS FOR expert_6_name =====
FFN: 17,432,576 parameters (100.00%)
Attention: 0 parameters (0.00%)
Other: 0 parameters (0.00%)
LoRA Total Parameters: 17,432,576
LoRA Rank: 4
LoRA Alpha: 16
Target Modules: ['gate_proj']
================================

Your code prints like this:

[2025-03-25 00:39:18,638] MoE-PEFT: expert_0_name total trainable params: 17432576
[2025-03-25 00:39:18,639] MoE-PEFT: expert_0_name total trainable params (except gates): 16515072
[2025-03-25 00:39:18,647] MoE-PEFT: expert_1_name total trainable params: 17432576
[2025-03-25 00:39:18,649] MoE-PEFT: expert_1_name total trainable params (except gates): 16515072
[2025-03-25 00:39:18,656] MoE-PEFT: expert_2_name total trainable params: 17432576
[2025-03-25 00:39:18,658] MoE-PEFT: expert_2_name total trainable params (except gates): 16515072
[2025-03-25 00:39:18,663] MoE-PEFT: expert_3_name total trainable params: 17432576
[2025-03-25 00:39:18,665] MoE-PEFT: expert_3_name total trainable params (except gates): 16515072
[2025-03-25 00:39:18,670] MoE-PEFT: expert_4_name total trainable params: 17432576
[2025-03-25 00:39:18,672] MoE-PEFT: expert_4_name total trainable params (except gates): 16515072
[2025-03-25 00:39:18,678] MoE-PEFT: expert_5_name total trainable params: 17432576
[2025-03-25 00:39:18,679] MoE-PEFT: expert_5_name total trainable params (except gates): 16515072
[2025-03-25 00:39:18,686] MoE-PEFT: expert_6_name total trainable params: 17432576
[2025-03-25 00:39:18,688] MoE-PEFT: expert_6_name total trainable params (except gates): 16515072

But the code printed in your trainer.py seems to print the total trainable parameters for each expert:

Image

Under the above parameters, my model still exceeds the video memory on a single 24GB 4090, which seems a bit abnormal. Is there any good solution?

Looking forward to your answer and thank you!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant