@@ -66,9 +66,9 @@ def is_prime(number: int) -> bool:
6666 """
6767
6868 # precondition
69- assert isinstance (number , int ) and (number >= 0 ), (
70- "' number' must been an int and positive"
71- )
69+ assert isinstance (number , int ) and (
70+ number >= 0
71+ ), "'number' must been an int and positive"
7272
7373 status = True
7474
@@ -92,7 +92,7 @@ def is_prime(number: int) -> bool:
9292# ------------------------------------------
9393
9494
95- def sieve_er (n ) :
95+ def sieve_er (n : int ) -> list [ int ] :
9696 """
9797 input: positive integer 'N' > 2
9898 returns a list of prime numbers from 2 up to N.
@@ -138,7 +138,7 @@ def sieve_er(n):
138138# --------------------------------
139139
140140
141- def get_prime_numbers (n ) :
141+ def get_prime_numbers (n : int ) -> list [ int ] :
142142 """
143143 input: positive integer 'N' > 2
144144 returns a list of prime numbers from 2 up to N (inclusive)
@@ -176,7 +176,7 @@ def get_prime_numbers(n):
176176# -----------------------------------------
177177
178178
179- def prime_factorization (number ) :
179+ def prime_factorization (number : int ) -> list [ int ] :
180180 """
181181 input: positive integer 'number'
182182 returns a list of the prime number factors of 'number'
@@ -216,7 +216,7 @@ def prime_factorization(number):
216216 while quotient != 1 :
217217 if is_prime (factor ) and (quotient % factor == 0 ):
218218 ans .append (factor )
219- quotient /= factor
219+ quotient // = factor
220220 else :
221221 factor += 1
222222
@@ -232,7 +232,7 @@ def prime_factorization(number):
232232# -----------------------------------------
233233
234234
235- def greatest_prime_factor (number ) :
235+ def greatest_prime_factor (number : int ) -> int :
236236 """
237237 input: positive integer 'number' >= 0
238238 returns the greatest prime number factor of 'number'
@@ -254,9 +254,9 @@ def greatest_prime_factor(number):
254254 """
255255
256256 # precondition
257- assert isinstance (number , int ) and (number >= 0 ), (
258- "' number' must been an int and >= 0"
259- )
257+ assert isinstance (number , int ) and (
258+ number >= 0
259+ ), "'number' must been an int and >= 0"
260260
261261 ans = 0
262262
@@ -274,7 +274,7 @@ def greatest_prime_factor(number):
274274# ----------------------------------------------
275275
276276
277- def smallest_prime_factor (number ) :
277+ def smallest_prime_factor (number : int ) -> int :
278278 """
279279 input: integer 'number' >= 0
280280 returns the smallest prime number factor of 'number'
@@ -296,9 +296,9 @@ def smallest_prime_factor(number):
296296 """
297297
298298 # precondition
299- assert isinstance (number , int ) and (number >= 0 ), (
300- "' number' must been an int and >= 0"
301- )
299+ assert isinstance (number , int ) and (
300+ number >= 0
301+ ), "'number' must been an int and >= 0"
302302
303303 ans = 0
304304
@@ -316,7 +316,7 @@ def smallest_prime_factor(number):
316316# ----------------------
317317
318318
319- def is_even (number ) :
319+ def is_even (number : int ) -> bool :
320320 """
321321 input: integer 'number'
322322 returns true if 'number' is even, otherwise false.
@@ -345,7 +345,7 @@ def is_even(number):
345345# ------------------------
346346
347347
348- def is_odd (number ) :
348+ def is_odd (number : int ) -> bool :
349349 """
350350 input: integer 'number'
351351 returns true if 'number' is odd, otherwise false.
@@ -374,7 +374,7 @@ def is_odd(number):
374374# ------------------------
375375
376376
377- def goldbach (number ) :
377+ def goldbach (number : int ) -> list [ int ] :
378378 """
379379 Goldbach's assumption
380380 input: a even positive integer 'number' > 2
@@ -399,9 +399,9 @@ def goldbach(number):
399399 """
400400
401401 # precondition
402- assert isinstance ( number , int ) and ( number > 2 ) and is_even ( number ), (
403- "' number' must been an int, even and > 2"
404- )
402+ assert (
403+ isinstance ( number , int ) and ( number > 2 ) and is_even ( number )
404+ ), "'number' must been an int, even and > 2"
405405
406406 ans = [] # this list will returned
407407
@@ -444,7 +444,7 @@ def goldbach(number):
444444# ----------------------------------------------
445445
446446
447- def kg_v (number1 , number2 ) :
447+ def kg_v (number1 : int , number2 : int ) -> int :
448448 """
449449 Least common multiple
450450 input: two positive integer 'number1' and 'number2'
@@ -525,17 +525,17 @@ def kg_v(number1, number2):
525525 done .append (n )
526526
527527 # precondition
528- assert isinstance (ans , int ) and (ans >= 0 ), (
529- "' ans' must been from type int and positive"
530- )
528+ assert isinstance (ans , int ) and (
529+ ans >= 0
530+ ), "'ans' must been from type int and positive"
531531
532532 return ans
533533
534534
535535# ----------------------------------
536536
537537
538- def get_prime (n ) :
538+ def get_prime (n : int ) -> int :
539539 """
540540 Gets the n-th prime number.
541541 input: positive integer 'n' >= 0
@@ -574,17 +574,17 @@ def get_prime(n):
574574 ans += 1
575575
576576 # precondition
577- assert isinstance (ans , int ) and is_prime (ans ), (
578- "' ans' must been a prime number and from type int"
579- )
577+ assert isinstance (ans , int ) and is_prime (
578+ ans
579+ ), "'ans' must been a prime number and from type int"
580580
581581 return ans
582582
583583
584584# ---------------------------------------------------
585585
586586
587- def get_primes_between (p_number_1 , p_number_2 ) :
587+ def get_primes_between (p_number_1 : int , p_number_2 : int ) -> list [ int ] :
588588 """
589589 input: prime numbers 'pNumber1' and 'pNumber2'
590590 pNumber1 < pNumber2
@@ -648,7 +648,7 @@ def get_primes_between(p_number_1, p_number_2):
648648# ----------------------------------------------------
649649
650650
651- def get_divisors (n ) :
651+ def get_divisors (n : int ) -> list [ int ] :
652652 """
653653 input: positive integer 'n' >= 1
654654 returns all divisors of n (inclusive 1 and 'n')
@@ -685,7 +685,7 @@ def get_divisors(n):
685685# ----------------------------------------------------
686686
687687
688- def is_perfect_number (number ) :
688+ def is_perfect_number (number : int ) -> bool :
689689 """
690690 input: positive integer 'number' > 1
691691 returns true if 'number' is a perfect number otherwise false.
@@ -705,9 +705,9 @@ def is_perfect_number(number):
705705 """
706706
707707 # precondition
708- assert isinstance (number , int ) and (number > 1 ), (
709- "' number' must been an int and >= 1"
710- )
708+ assert isinstance (number , int ) and (
709+ number > 1
710+ ), "'number' must been an int and >= 1"
711711
712712 divisors = get_divisors (number )
713713
@@ -725,7 +725,7 @@ def is_perfect_number(number):
725725# ------------------------------------------------------------
726726
727727
728- def simplify_fraction (numerator , denominator ) :
728+ def simplify_fraction (numerator : int , denominator : int ) -> tuple [ int , int ] :
729729 """
730730 input: two integer 'numerator' and 'denominator'
731731 assumes: 'denominator' != 0
@@ -764,7 +764,7 @@ def simplify_fraction(numerator, denominator):
764764# -----------------------------------------------------------------
765765
766766
767- def factorial (n ) :
767+ def factorial (n : int ) -> int :
768768 """
769769 input: positive integer 'n'
770770 returns the factorial of 'n' (n!)
0 commit comments