-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCUB_PSOL_training_cls_model.py
250 lines (206 loc) · 9.03 KB
/
CUB_PSOL_training_cls_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# coding: utf-8
# In[1]:
import time
import os
import random
import math
import torch
import torchvision
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import Dataset
from torch.optim import lr_scheduler
from torch.autograd import Variable
from torchvision import datasets, models, transforms
from PIL import Image
from utils.func import *
from utils.IoU import *
from models.models import *
import warnings
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning)
import argparse
from loader.cub_loader_adv import custom_Compose, custom_RandomHorizontalFlip, custom_RandomResizedCrop, custom_Resize, CUBirds_2011
import copy
# In[2]:
### Some utilities
# In[3]:
def compute_reg_acc(preds, targets, theta=0.5):
# preds = box_transform_inv(preds.clone(), im_sizes)
# preds = crop_boxes(preds, im_sizes)
# targets = box_transform_inv(targets.clone(), im_sizes)
IoU = compute_IoU(preds, targets)
# print(preds, targets, IoU)
corr = (IoU >= theta).sum()
return float(corr) / float(preds.size(0))
def compute_cls_acc(preds, targets):
pred = torch.max(preds, 1)[1]
# print(preds, pred)
num_correct = (pred == targets).sum()
return float(num_correct) / float(preds.size(0))
def compute_acc(reg_preds, reg_targets, cls_preds, cls_targets, theta=0.5):
IoU = compute_IoU(reg_preds, reg_targets)
reg_corr = (IoU >= theta)
pred = torch.max(cls_preds, 1)[1]
cls_corr = (pred == cls_targets)
corr = (reg_corr & cls_corr).sum()
return float(corr) / float(reg_preds.size(0))
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
# ### Visualize training data
# In[10]:
# prepare data
parser = argparse.ArgumentParser(description='Parameters for PSOL evaluation')
parser.add_argument('--cls-model', metavar='clsarg', type=str, default='resnet50',dest='clsmodel')
parser.add_argument('--input_size',default=256,dest='input_size')
parser.add_argument('--epochs',default=100,dest='epochs')
parser.add_argument('--gpu',help='which gpu to use',default='0, 1, 2, 3',dest='gpu')
parser.add_argument('--ddt_path',help='generated ddt path',default='./results/DDT/CUB/Projection/VGG16-448/ddt_bounding_boxes.txt',dest="ddt_path")
parser.add_argument('--save_path',help='model save path',default='./results/PSOL/CUB',dest='save_path')
parser.add_argument('--batch_size',default=64,type=int,dest='batch_size')
parser.add_argument('data',metavar='DIR',help='path to CUB dataset')
SEED = 16
torch.manual_seed(SEED)
np.random.seed(SEED)
#random.seed(SEED)
torch.cuda.manual_seed_all(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
args = parser.parse_args()
batch_size = args.batch_size
#lr = 1e-3 * (batch_size / 64)
lr = 1e-1
# lr = 3e-4
momentum = 0.9
weight_decay = 5e-4
print_freq = 10
root = args.data
savepath = args.save_path
# os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
# os.environ['OMP_NUM_THREADS'] = '20'
# os.environ['MKL_NUM_THREADS'] = '20'
train_transform = custom_Compose([custom_Resize((args.input_size,args.input_size)),
custom_RandomHorizontalFlip(p=0.5),
transforms.ToTensor(),
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))])
test_transform = custom_Compose([custom_Resize((args.input_size,args.input_size)),
transforms.ToTensor(),
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))])
MyTrainData = CUBirds_2011(root=args.data,
pseudo_bbox_dir=args.ddt_path,
split='trainval', # we take default PSOL hyperparameters fro training, hence training directly on trainval
target_type=['class'],
transform=train_transform)
MyTestData = CUBirds_2011(root=args.data,
split='test', # we take default PSOL hyperparameters fro training, hence testing directly on test set
target_type=['class'],
transform=test_transform)
train_loader = torch.utils.data.DataLoader(dataset=MyTrainData,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=MyTestData, batch_size=batch_size)
dataloaders = {'train': train_loader, 'test': test_loader}
# construct model
model = choose_clsmodel(args.clsmodel, num_classes=200).to('cuda')
# if args.clsmodel in ['densenet161', 'vgg16', 'vgggap']:
# for name, param in model.named_parameters():
# if not ('classifier' in name):
# param.requires_grad_(False)
# elif args.clsmodel in ['resnet50']:
# for name, param in model.named_parameters():
# if not ('fc' in name):
# param.requires_grad_(False)
print(model)
# model = torch.nn.DataParallel(model)
cls_criterion = nn.CrossEntropyLoss()
# if args.clsmodel in ['densenet161', 'vgg16', 'vgggap']:
# dense1_params = list(map(id, model.module.classifier.parameters()))
# rest_params = filter(lambda x: id(x) not in dense1_params, model.parameters())
# param_list = [{'params': model.module.classifier.parameters(), 'lr': 1 * lr},
# {'params': rest_params,'lr': 0 * lr}]
# elif args.clsmodel in ['resnet50']:
# dense1_params = list(map(id, model.module.fc.parameters()))
# rest_params = filter(lambda x: id(x) not in dense1_params, model.parameters())
# param_list = [{'params': model.module.fc.parameters(), 'lr': 1 * lr},
# {'params': rest_params,'lr': 0 * lr}]
optimizer = torch.optim.SGD(model.parameters(), lr, #momentum=momentum,
weight_decay=weight_decay)
scheduler = lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)
# torch.backends.cudnn.benchmark = True
best_model_state = model.state_dict()
best_epoch = -1
best_acc = 0.0
epoch_loss = {'train': [], 'test': []}
epoch_acc = {'train': [], 'test': []}
epochs = args.epochs
lambda_cls = 0
for epoch in range(epochs):
lambda_cls = 1
for phase in ('train', 'test'):
cls_accs = AverageMeter()
cls_losses = AverageMeter()
batch_time = AverageMeter()
data_time = AverageMeter()
if phase == 'train':
if epoch > 0:
scheduler.step()
model.train()
else:
model.eval()
end = time.time()
cnt = 0
for ims, labels in dataloaders[phase]:
data_time.update(time.time() - end)
inputs = ims.to('cuda')
labels = labels.to('cuda')
optimizer.zero_grad()
# forward
if phase == 'train':
cls_outputs = model(inputs)
cls_loss = cls_criterion(cls_outputs, labels)
else:
with torch.no_grad():
cls_outputs = model(inputs)
cls_loss = cls_criterion(cls_outputs, labels)
loss = lambda_cls * cls_loss
cls_acc = compute_cls_acc(cls_outputs.data.cpu(), labels.data.cpu())
nsample = inputs.size(0)
cls_accs.update(cls_acc, nsample)
cls_losses.update(cls_loss.item(), nsample)
if phase == 'train':
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if cnt % print_freq == 0:
print(
'[{}]\tEpoch: {}/{}\t Iter: {}/{} Time {:.3f} ({:.3f})\t Data {:.3f} ({:.3f})\tCls Loss: {:.4f}\tCls Acc: {:.2%}\t'.format(
phase, epoch + 1, epochs, cnt, len(dataloaders[phase]), batch_time.val,batch_time.avg,data_time.val,data_time.avg,lambda_cls * cls_losses.avg, cls_accs.avg))
cnt += 1
if phase == 'test' and cls_accs.avg > best_acc:
best_acc = cls_accs.avg
best_epoch = epoch
best_model_state = copy.deepcopy(model.state_dict())
elapsed_time = time.time() - end
print(
'[{}]\tEpoch: {}/{}\tLoc Loss: {:.4f}\tLoc Acc: {:.2%}\tTime: {:.3f}'.format(
phase, epoch + 1, epochs, lambda_cls * cls_losses.avg, cls_accs.avg,elapsed_time))
epoch_loss[phase].append(cls_losses.avg)
epoch_acc[phase].append(cls_accs.avg)
print('[Info] best test acc: {:.2%} at {}th epoch'.format(best_acc, best_epoch + 1))
if not os.path.exists(savepath):
os.makedirs(savepath)
torch.save(model.state_dict(), os.path.join(savepath,'checkpoint_classification_cub_ddt_' + args.clsmodel + "_" + str(epoch) + '.pth.tar'))
torch.save(best_model_state, os.path.join(savepath,'best_classification_cub_ddt_' + args.clsmodel + '.pth.tar'))