-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPSOL_inference_on_train_set.py
130 lines (110 loc) · 4.07 KB
/
PSOL_inference_on_train_set.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import sys
import json
import numpy as np
import torch
import torchvision.transforms as transforms
from torch.backends import cudnn
import torch.nn as nn
import torchvision
from PIL import Image
from utils.func import *
from utils.vis import *
from utils.IoU import *
from models.models import choose_locmodel,choose_clsmodel
from utils.augment import *
import argparse
parser = argparse.ArgumentParser(description='Parameters for PSOL evaluation')
parser.add_argument('--loc-model', metavar='locarg', type=str, default='vgg16',dest='locmodel')
parser.add_argument('--cls-model', metavar='clsarg', type=str, default='vgg16',dest='clsmodel')
parser.add_argument('--input_size',default=256,dest='input_size')
parser.add_argument('--crop_size',default=224,dest='crop_size')
parser.add_argument('--ten-crop', help='tencrop', action='store_true',dest='tencrop')
parser.add_argument('--gpu',help='which gpu to use',default='0',dest='gpu')
parser.add_argument('data',metavar='DIR',help='path to imagenet dataset')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
os.environ['OMP_NUM_THREADS'] = "4"
os.environ['MKL_NUM_THREADS'] = "4"
cudnn.benchmark = True
TEN_CROP = args.tencrop
normalize = transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
transform = transforms.Compose([
transforms.Resize((args.input_size,args.input_size)),
transforms.CenterCrop(args.crop_size),
transforms.ToTensor(),
normalize
])
cls_transform = transforms.Compose([
transforms.Resize((args.input_size,args.input_size)),
transforms.CenterCrop(args.crop_size),
transforms.ToTensor(),
normalize
])
ten_crop_aug = transforms.Compose([
transforms.Resize((args.input_size,args.input_size)),
transforms.TenCrop(args.crop_size),
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])),
transforms.Lambda(lambda crops: torch.stack([normalize(crop) for crop in crops])),
])
# localizer
locname = args.locmodel
model = choose_locmodel(locname, True)
print(model)
model = model.to(0)
model.eval()
# classifier
clsname = args.clsmodel
cls_model = choose_clsmodel(clsname)
cls_model = cls_model.to(0)
cls_model.eval()
# dataset directories
root = args.data
val_imagedir = os.path.join(root, 'train')
classes = os.listdir(val_imagedir)
classes.sort()
temp_softmax = nn.Softmax()
#print(classes[0])
class_to_idx = {classes[i]:i for i in range(len(classes))}
result = {}
accs = []
accs_top5 = []
loc_accs = []
cls_accs = []
final_cls = []
final_loc = []
final_clsloc = []
final_clsloctop5 = []
final_ind = []
save_pseudo_bboxes_path = './results/ImageNet_train_set/predicted_bounding_boxes'
if not os.path.exists(save_pseudo_bboxes_path):
os.makedirs(save_pseudo_bboxes_path)
for k in range(1000):
cls = classes[k]
total = 0
IoUSet = []
IoUSetTop5 = []
LocSet = []
ClsSet = []
files = os.listdir(os.path.join(val_imagedir, cls))
files.sort()
pseudo_bboxes = {}
for (i, name) in enumerate(files):
# raw_img = cv2.imread(os.path.join(imagedir, cls, name))
now_index = int(name.split('_')[-1].split('.')[0])
final_ind.append(now_index-1)
raw_img = Image.open(os.path.join(val_imagedir, cls, name)).convert('RGB')
w, h = raw_img.size
with torch.no_grad():
img = transform(raw_img)
img = torch.unsqueeze(img, 0)
img = img.to(0)
reg_outputs = model(img) # localizer
bbox = to_data(reg_outputs)
bbox = torch.squeeze(bbox) # The outputs are in (x, y, w, h) format
#bbox = bbox.numpy() # This is the normalized (between 0 and 1) predicted bounding box: can think as the values are for input of size (w, h) = (1, 1)
pseudo_bboxes[os.path.join(val_imagedir, cls, name)] = [bbox[0].item(), bbox[1].item(), bbox[2].item(), bbox[3].item()]
with open(os.path.join(save_pseudo_bboxes_path, '%s_bbox.json' % cls), 'w') as fp:
json.dump(pseudo_bboxes, fp)
if (k+1) %100==0:
print(k)