-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassify_sk.py
40 lines (31 loc) · 1.37 KB
/
classify_sk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
df1 = pd.read_csv('2018_batting.csv')
#df1.drop(columns=['Rk', 'Name', 'Age', 'Lg', 'Tm', 'Pos Summary','Name-additional'], axis=1)
df2 = pd.read_csv('2019_batting.csv')
df3 = pd.read_csv('2020_batting.csv')
df4 = pd.read_csv('2021_batting.csv')
df5 = pd.read_csv('2022_batting.csv')
#print(df1.head)
combined_df = pd.concat([df1, df2, df3, df4, df5], ignore_index=True)
combined_df = combined_df.dropna()
#print(combined_df.head)
X = combined_df.drop(['MVP', 'Name-additional'], axis=1)
#y = combined_df['MVP'] # Target variable
Y = combined_df['MVP']
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
classifier = RandomForestClassifier(n_estimators=100, random_state=42)
classifier.fit(X_train, Y_train)
Y_pred = classifier.predict(X_test)
accuracy = accuracy_score(Y_test, Y_pred)
print(f'Accuracy: {accuracy}')
report = classification_report(Y_test, Y_pred)
print('Classification Report:\n', report)
conf_matrix = confusion_matrix(Y_test, Y_pred)
print('Confusion Matrix:\n', conf_matrix)