-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathui.py
794 lines (656 loc) · 25.7 KB
/
ui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
from typing import Any, List
import gradio as gr
from stringcase import sentencecase
from modules.logging_colors import logger
from modules.ui import refresh_symbol
from .context import GenerationContext
from .ext_modules.vram_manager import VramReallocationTarget, attempt_vram_reallocation
from .params import (
ContinuousModePromptGenerationMode,
InteractiveModePromptGenerationMode,
IPAdapterAdapter,
)
from .params import StableDiffusionWebUiExtensionParams as Params
from .params import TriggerMode
from .sd_client import SdWebUIApi
STATUS_SUCCESS = "#00FF00"
STATUS_PROGRESS = "#FFFF00"
STATUS_FAILURE = "#FF0000"
refresh_listeners: List[Any] = []
connect_listeners: List[Any] = []
status: gr.Label | None = None
status_text: str = ""
refresh_button: gr.Button | None = None
sd_client: SdWebUIApi | None = None
sd_samplers: List[str] = []
sd_upscalers: List[str] = []
sd_checkpoints: List[str] = []
sd_current_checkpoint: str = ""
sd_vaes: List[str] = []
sd_current_vae: str = ""
sd_connected: bool = True
sd_options: Any = None
def render_ui(params: Params) -> None:
_render_status()
_refresh_sd_data(params)
_render_connection_details(params)
_render_prompts(params)
_render_models(params)
_render_generation_parameters(params)
with gr.Row():
_render_chat_config(params)
with gr.Row():
_render_faceswaplab_config(params)
_render_reactor_config(params)
with gr.Row():
_render_faceid_config(params)
_render_ipadapter_config(params)
def _render_connection_details(params: Params) -> None:
global refresh_button
with gr.Accordion("Connection details", open=True):
with gr.Row():
with gr.Column():
api_username = gr.Textbox(
label="Username",
placeholder="Leave empty if no authentication is required",
value=lambda: params.api_username or "",
)
api_username.change(
lambda new_username: params.update({"api_username": new_username}),
api_username,
None,
)
api_password = gr.Textbox(
label="Password",
placeholder="Leave empty if no authentication is required",
value=lambda: params.api_password or "",
type="password",
)
api_password.change(
lambda new_api_password: params.update(
{"api_password": new_api_password}
),
api_password,
None,
)
with gr.Column():
api_endpoint = gr.Textbox(
label="API Endpoint",
placeholder=params.api_endpoint,
value=lambda: params.api_endpoint,
)
api_endpoint.change(
lambda new_api_endpoint: params.update(
{"api_endpoint": new_api_endpoint}
),
api_endpoint,
None,
)
refresh_button = gr.Button(
refresh_symbol + " Connect / refresh data",
interactive=True,
)
refresh_button.click(
lambda: _refresh_sd_data(params, force_refetch=True),
inputs=[],
outputs=refresh_listeners,
)
def _render_prompts(params: Params) -> None:
with gr.Accordion("Prompt Settings", open=True, visible=sd_connected) as prompts:
connect_listeners.append(prompts)
with gr.Row():
prompt = gr.Textbox(
label="Base prompt used for image generation",
placeholder=params.base_prompt,
value=lambda: params.base_prompt,
)
prompt.change(
lambda new_prompt: params.update({"base_prompt": new_prompt}),
prompt,
None,
)
negative_prompt = gr.Textbox(
label="Base negative prompt used for image generation",
placeholder=params.base_negative_prompt,
value=lambda: params.base_negative_prompt,
)
negative_prompt.change(
lambda new_prompt: params.update({"base_negative_prompt": new_prompt}),
negative_prompt,
None,
)
def _render_models(params: Params) -> None:
with gr.Accordion("Models", open=True, visible=sd_connected) as models:
connect_listeners.append(models)
with gr.Row():
global sd_current_checkpoint, sd_current_vae
checkpoint = gr.Dropdown(
label="Checkpoint",
choices=sd_checkpoints, # type: ignore
value=lambda: sd_current_checkpoint, # checkpoint is not defined in params # noqa: E501
)
checkpoint.change(
lambda new_checkpoint: _load_checkpoint(new_checkpoint, params),
checkpoint,
None,
)
refresh_listeners.append(checkpoint)
vae = gr.Dropdown(
label="VAE",
choices=sd_vaes + ['None'], # type: ignore
value=lambda: sd_current_vae, # vae is not defined in params
)
vae.change(
lambda new_vae: _load_vae(new_vae, params),
vae,
None,
)
refresh_listeners.append(vae)
def _render_generation_parameters(params: Params) -> None:
with gr.Accordion(
"Generation Parameters", open=True, visible=sd_connected
) as generation_params:
connect_listeners.append(generation_params)
with gr.Row():
with gr.Row():
width = gr.Number(
label="Width",
maximum=2048,
value=lambda: params.width,
)
width.change(
lambda new_width: params.update({"width": new_width}),
width,
None,
)
height = gr.Number(
label="Height",
maximum=2048,
value=lambda: params.height,
)
height.change(
lambda new_height: params.update({"height": new_height}),
height,
None,
)
with gr.Column():
with gr.Row(elem_id="sampler_row"):
sampler_name = gr.Dropdown(
label="Sampling method",
choices=sd_samplers, # type: ignore
value=lambda: params.sampler_name,
elem_id="sampler_box",
)
sampler_name.change(
lambda new_sampler_name: params.update(
{"sampler_name": new_sampler_name}
),
sampler_name,
None,
)
refresh_listeners.append(sampler_name)
steps = gr.Slider(
label="Sampling steps",
minimum=1,
maximum=150,
value=lambda: params.sampling_steps,
step=1,
elem_id="steps_box",
)
steps.change(
lambda new_steps: params.update({"sampling_steps": new_steps}),
steps,
None,
)
clip_skip = gr.Slider(
label="CLIP skip",
minimum=1,
maximum=4,
value=lambda: params.clip_skip,
step=1,
elem_id="clip_skip_box",
)
clip_skip.change(
lambda new_clip_skip: params.update(
{"clip_skip": new_clip_skip}
),
clip_skip,
None,
)
with gr.Row():
seed = gr.Number(
label="Seed (use -1 for random)",
value=lambda: params.seed,
elem_id="seed_box",
)
seed.change(lambda new_seed: params.update({"seed": new_seed}), seed, None)
cfg_scale = gr.Slider(
label="CFG Scale",
value=lambda: params.cfg_scale,
minimum=1,
maximum=30,
elem_id="cfg_box",
step=0.5,
)
cfg_scale.change(
lambda new_cfg_scale: params.update({"cfg_scale": new_cfg_scale}),
cfg_scale,
None,
)
with gr.Column() as hr_options:
restore_faces = gr.Checkbox(
label="Restore faces", value=lambda: params.restore_faces_enabled
)
restore_faces.change(
lambda new_value: params.update(
{"restore_faces_enabled": new_value}
),
restore_faces,
None,
)
enable_hr = gr.Checkbox(
label="Upscale image", value=lambda: params.upscaling_enabled
)
enable_hr.change(
lambda new_value: params.update({"upscaling_enabled": new_value}),
enable_hr,
None,
)
with gr.Row(
visible=params.upscaling_enabled, elem_classes="hires_opts"
) as hr_options:
connect_listeners.append(hr_options)
enable_hr.change(
lambda enabled: hr_options.update(visible=enabled),
enable_hr,
hr_options,
)
hr_upscaler = gr.Dropdown(
label="Upscaler",
choices=sd_upscalers, # type: ignore
value=lambda: params.upscaling_upscaler,
allow_custom_value=True,
)
hr_upscaler.change(
lambda new_upscaler: params.update(
{"upscaling_upscaler": new_upscaler}
),
hr_upscaler,
None,
)
refresh_listeners.append(hr_upscaler)
hr_scale = gr.Slider(
label="Upscale amount",
minimum=1,
maximum=4,
value=lambda: params.upscaling_scale,
step=0.01,
)
hr_scale.change(
lambda new_value: params.update({"upscaling_scale": new_value}),
hr_scale,
None,
)
hires_fix_denoising_strength = gr.Slider(
label="Denoising strength",
minimum=0,
maximum=1,
value=lambda: params.hires_fix_denoising_strength,
step=0.01,
)
hires_fix_denoising_strength.change(
lambda new_value: params.update(
{"hires_fix_denoising_strength": new_value}
),
hires_fix_denoising_strength,
None,
)
def _render_faceswaplab_config(params: Params) -> None:
with gr.Accordion(
"FaceSwapLab", open=True, visible=sd_connected
) as faceswap_config:
connect_listeners.append(faceswap_config)
with gr.Column():
faceswap_enabled = gr.Checkbox(
label="Enabled", value=lambda: params.faceswaplab_enabled
)
faceswap_enabled.change(
lambda new_enabled: params.update({"faceswaplab_enabled": new_enabled}),
faceswap_enabled,
None,
)
faceswap_source_face = gr.Text(
label="Source face",
placeholder="See documentation for details...",
value=lambda: params.faceswaplab_source_face,
)
faceswap_source_face.change(
lambda new_source_face: params.update(
{"faceswaplab_source_face": new_source_face}
),
faceswap_source_face,
None,
)
def _render_reactor_config(params: Params) -> None:
with gr.Accordion("ReActor", open=True, visible=sd_connected) as reactor_config:
connect_listeners.append(reactor_config)
with gr.Column():
reactor_enabled = gr.Checkbox(
label="Enabled", value=lambda: params.reactor_enabled
)
reactor_enabled.change(
lambda new_enabled: params.update({"reactor_enabled": new_enabled}),
reactor_enabled,
None,
)
reactor_source_face = gr.Text(
label="Source face",
placeholder="See documentation for details...",
value=lambda: params.reactor_source_face,
)
reactor_source_face.change(
lambda new_source_face: params.update(
{"reactor_source_face": new_source_face}
),
reactor_source_face,
None,
)
def _render_faceid_config(params: Params) -> None:
with gr.Accordion("FaceID (SD.Next only)", open=True, visible=sd_connected) as faceid_config: # noqa: E501
connect_listeners.append(faceid_config)
with gr.Column():
faceid_enabled = gr.Checkbox(
label="Enabled", value=lambda: params.faceid_enabled
)
faceid_enabled.change(
lambda new_enabled: params.update({"faceid_enabled": new_enabled}),
faceid_enabled,
None,
)
faceid_source_face = gr.Text(
label="Source face",
placeholder="See documentation for details...",
value=lambda: params.faceid_source_face,
)
faceid_source_face.change(
lambda new_source_face: params.update(
{"faceid_source_face": new_source_face}
),
faceid_source_face,
None,
)
faceid_mode = gr.Dropdown(
label="Mode",
choices=["FaceID", "FaceSwap"],
value=lambda: params.faceid_mode,
)
faceid_mode.change(
lambda new_mode: params.update({"faceid_mode": new_mode}),
faceid_mode,
None,
)
faceid_model = gr.Dropdown(
label="Model",
choices=["FaceID Base", "FaceID Plus", "FaceID Plus v2", "FaceID XL"],
value=lambda: params.faceid_model,
)
faceid_model.change(
lambda new_model: params.update({"faceid_model": new_model}),
faceid_model,
None,
)
faceid_strength = gr.Slider(
label="Strength",
value=lambda: params.faceid_strength,
minimum=0,
maximum=2,
step=0.01,
)
faceid_strength.change(
lambda new_strength: params.update({"faceid_strength": new_strength}),
faceid_strength,
None,
)
faceid_structure = gr.Slider(
label="Structure",
value=lambda: params.faceid_structure,
minimum=0,
maximum=1,
step=0.01,
)
faceid_structure.change(
lambda new_structure: params.update(
{"faceid_structure": new_structure}
),
faceid_structure,
None,
)
def _render_ipadapter_config(params: Params) -> None:
with gr.Accordion(
"IP Adapter (SD.Next only)", open=True, visible=sd_connected
) as ipadapter_config:
connect_listeners.append(ipadapter_config)
with gr.Column():
ipadapter_enabled = gr.Checkbox(
label="Enabled", value=lambda: params.ipadapter_enabled
)
ipadapter_enabled.change(
lambda new_enabled: params.update({"ipadapter_enabled": new_enabled}),
ipadapter_enabled,
None,
)
ipadapter_adapter = gr.Dropdown(
label="Adapter",
choices=[adapter for adapter in IPAdapterAdapter],
value=lambda: params.ipadapter_adapter,
type="index",
)
ipadapter_adapter.change(
lambda index: params.update(
{"ipadapter_adapter": IPAdapterAdapter.from_index(index)}
),
ipadapter_adapter,
None,
)
ipadapter_reference_image = gr.Text(
label="Reference image",
placeholder="See documentation for details...",
value=lambda: params.ipadapter_reference_image,
)
ipadapter_reference_image.change(
lambda new_reference_image: params.update(
{"ipadapter_reference_image": new_reference_image}
),
ipadapter_reference_image,
None,
)
ipadapter_scale = gr.Slider(
label="Scale",
minimum=0,
maximum=1,
value=lambda: params.ipadapter_scale,
step=0.1,
)
ipadapter_scale.change(
lambda new_scale: params.update({"ipadapter_scale": new_scale}),
ipadapter_scale,
None,
)
def _render_chat_config(params: Params) -> None:
with gr.Accordion("Chat Settings", open=True, visible=True) as chat_config:
connect_listeners.append(chat_config)
with gr.Column():
trigger_mode = gr.Dropdown(
label="Image generation trigger mode",
choices=[sentencecase(mode) for mode in TriggerMode],
value=lambda: sentencecase(params.trigger_mode),
type="index",
)
trigger_mode.change(
lambda index: params.update(
{"trigger_mode": TriggerMode.from_index(index)}
),
trigger_mode,
None,
)
interactive_prompt_generation_mode = gr.Dropdown(
label="Interactive mode prompt generation mode",
choices=[
sentencecase(mode) for mode in InteractiveModePromptGenerationMode
],
value=lambda: sentencecase(
params.interactive_mode_prompt_generation_mode
),
type="index",
)
interactive_prompt_generation_mode.change(
lambda index: params.update(
{
"interactive_mode_prompt_generation_mode": InteractiveModePromptGenerationMode.from_index( # noqa: E501
index
)
}
),
interactive_prompt_generation_mode,
None,
)
continuous_prompt_generation_mode = gr.Dropdown(
label="Continous mode prompt generation mode",
choices=[
sentencecase(mode) for mode in ContinuousModePromptGenerationMode
],
value=lambda: sentencecase(
params.continuous_mode_prompt_generation_mode
),
type="index",
)
continuous_prompt_generation_mode.change(
lambda index: params.update(
{
"continuous_mode_prompt_generation_mode": ContinuousModePromptGenerationMode.from_index( # noqa: E501
index
)
}
),
continuous_prompt_generation_mode,
None,
)
def _render_status() -> None:
global status
status = gr.Label(lambda: status_text, label="Status", show_label=True)
_set_status("Ready.", STATUS_SUCCESS)
def _refresh_sd_data(params: Params, force_refetch: bool = False) -> None:
global sd_client, sd_connected, refresh_button
sd_client = SdWebUIApi(
baseurl=params.api_endpoint,
username=params.api_username,
password=params.api_password,
)
sd_connected = True
_set_status("Connecting to Stable Diffusion WebUI...", STATUS_PROGRESS)
if sd_connected and (force_refetch or sd_options is None):
_fetch_sd_options(sd_client)
if sd_connected and (force_refetch or len(sd_samplers) == 0):
_fetch_samplers(sd_client)
if sd_connected and (force_refetch or len(sd_upscalers) == 0):
_fetch_upscalers(sd_client)
if sd_connected and (force_refetch or len(sd_checkpoints) == 0):
_fetch_checkpoints(sd_client)
if sd_connected and (force_refetch or len(sd_vaes) == 0):
_fetch_vaes(sd_client)
for listener in connect_listeners:
listener.set_visibility(sd_connected)
if not sd_connected:
_set_status("Stable Diffusion WebUI connection failed", STATUS_FAILURE)
return
_set_status("✓ Connected to Stable Diffusion WebUI", STATUS_SUCCESS)
def _fetch_sd_options(sd_client: SdWebUIApi) -> None:
_set_status("Fetching Stable Diffusion WebUI options...", STATUS_PROGRESS)
global sd_options, sd_connected
try:
sd_options = sd_client.get_options()
except BaseException as error:
logger.error(error, exc_info=True)
sd_connected = False
def _fetch_samplers(sd_client: SdWebUIApi) -> None:
_set_status("Fetching Stable Diffusion samplers...", STATUS_PROGRESS)
global sd_samplers, sd_connected
try:
sd_samplers = [
sampler if isinstance(sampler, str) else sampler["name"]
for sampler in sd_client.get_samplers()
]
except BaseException as error:
logger.error(error, exc_info=True)
sd_connected = False
def _fetch_upscalers(sd_client: SdWebUIApi) -> None:
_set_status("Fetching Stable Diffusion upscalers...", STATUS_PROGRESS)
global sd_upscalers, sd_connected
try:
sd_upscalers = [
upscaler if isinstance(upscaler, str) else upscaler["name"]
for upscaler in sd_client.get_upscalers()
]
except BaseException as error:
logger.error(error, exc_info=True)
sd_connected = False
def _fetch_checkpoints(sd_client: SdWebUIApi) -> None:
_set_status("Fetching Stable Diffusion checkpoints...", STATUS_PROGRESS)
global sd_checkpoints, sd_current_checkpoint, sd_connected
try:
sd_client.refresh_checkpoints()
sd_current_checkpoint = sd_options["sd_model_checkpoint"]
sd_checkpoints = [
checkpoint["title"] for checkpoint in sd_client.get_sd_models()
]
except BaseException as error:
logger.error(error, exc_info=True)
sd_connected = False
def _fetch_vaes(sd_client: SdWebUIApi) -> None:
_set_status("Fetching Stable Diffusion VAEs...", STATUS_PROGRESS)
global sd_vaes, sd_current_vae, sd_connected
try:
sd_client.refresh_vae()
sd_current_vae = sd_options["sd_vae"]
sd_vaes = [checkpoint["model_name"] for checkpoint in sd_client.get_sd_vae()]
except BaseException as error:
logger.error(error, exc_info=True)
sd_connected = False
def _load_checkpoint(checkpoint: str, params: Params) -> None:
global sd_client, sd_current_checkpoint
sd_current_checkpoint = checkpoint
assert sd_client is not None
sd_client.set_options({"sd_model_checkpoint": checkpoint})
# apply changes if dynamic VRAM allocation is not enabled
# todo: check if model is loaded in VRAM via SD API instead of relying on vram reallocation check # noqa: E501
if not params.dynamic_vram_reallocation_enabled:
_set_status(
f"Loading Stable Diffusion checkpoint: {checkpoint}...", STATUS_PROGRESS
)
sd_client.reload_checkpoint()
_set_status("Reloading LLM model:...", STATUS_PROGRESS)
attempt_vram_reallocation(
VramReallocationTarget.LLM,
GenerationContext(params=params, sd_client=sd_client),
)
_set_status(f"Stable Diffusion checkpoint ready: {checkpoint}.", STATUS_SUCCESS)
def _load_vae(vae: str, params: Params) -> None:
global sd_client, sd_current_vae
sd_current_vae = vae
assert sd_client is not None
sd_client.set_options({"sd_vae": vae})
# apply changes if dynamic VRAM allocation is not enabled
# todo: check if model is loaded in VRAM via SD API instead of relying on vram reallocation check # noqa: E501
if not params.dynamic_vram_reallocation_enabled:
_set_status(f"Loading Stable Diffusion VAE: {vae}...", STATUS_PROGRESS)
sd_client.reload_checkpoint()
attempt_vram_reallocation(
VramReallocationTarget.LLM,
GenerationContext(params=params, sd_client=sd_client),
)
_set_status(f"Stable Diffusion VAE ready: {vae}.", STATUS_SUCCESS)
def _set_status(text: str, status_color: str) -> None:
global status, status_text
assert status is not None
status_text = text
logger.info("[SD WebUI Integration] " + status_text)