|
| 1 | +# MIT License |
| 2 | +# |
| 3 | +# Copyright (C) The Adversarial Robustness Toolbox (ART) Authors 2020 |
| 4 | +# |
| 5 | +# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated |
| 6 | +# documentation files (the "Software"), to deal in the Software without restriction, including without limitation the |
| 7 | +# rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit |
| 8 | +# persons to whom the Software is furnished to do so, subject to the following conditions: |
| 9 | +# |
| 10 | +# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the |
| 11 | +# Software. |
| 12 | +# |
| 13 | +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE |
| 14 | +# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 15 | +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, |
| 16 | +# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 17 | +# SOFTWARE. |
| 18 | +""" |
| 19 | +This module implements metric for inference attack worst case accuracy measurement. |
| 20 | +""" |
| 21 | +from __future__ import absolute_import, division, print_function, unicode_literals |
| 22 | +from typing import Optional, List, Tuple |
| 23 | + |
| 24 | +import numpy as np |
| 25 | +from sklearn.metrics import roc_curve |
| 26 | +import logging |
| 27 | + |
| 28 | + |
| 29 | +TPR = float |
| 30 | +FPR = float |
| 31 | +THR = float |
| 32 | + |
| 33 | + |
| 34 | +def _calculate_roc_for_fpr(y_true, y_proba, targeted_fpr): |
| 35 | + """ Get FPR, TPR and, THRESHOLD based on the targeted_fpr (such that FPR <= targeted_fpr) """ |
| 36 | + fpr, tpr, thr = roc_curve(y_true=y_true, y_score=y_proba) |
| 37 | + # take the highest fpr and an appropriated threshold that achieve at least FPR=fpr |
| 38 | + if np.isnan(fpr).all() or np.isnan(tpr).all(): |
| 39 | + logging.warning("TPR or FPR values are NaN") |
| 40 | + return None, None, None |
| 41 | + else: |
| 42 | + targeted_fpr_idx = np.where(fpr <= targeted_fpr)[0][-1] |
| 43 | + return fpr[targeted_fpr_idx], tpr[targeted_fpr_idx], thr[targeted_fpr_idx] |
| 44 | + |
| 45 | + |
| 46 | +def get_roc_for_fpr( # pylint: disable=C0103 |
| 47 | + attack_proba: np.ndarray, |
| 48 | + attack_true: np.ndarray, |
| 49 | + target_model_labels: Optional[np.ndarray] = None, |
| 50 | + targeted_fpr: Optional[float] = 0.001, |
| 51 | +) -> List[Tuple[Optional[int], FPR, TPR, THR]]: |
| 52 | + """ |
| 53 | + Compute the attack TPR, THRESHOLD and achieved FPR based on the targeted FPR. This implementation supports only |
| 54 | + binary attack prediction labels {0,1}. The returned THRESHOLD defines the decision threshold on the attack |
| 55 | + probabilities (meaning if p < THRESHOLD predict 0, otherwise predict 1) |
| 56 | + | Related paper link: https://arxiv.org/abs/2112.03570 |
| 57 | +
|
| 58 | + :param attack_proba: Predicted attack probabilities. |
| 59 | + :param attack_true: True attack labels. |
| 60 | + :param targeted_fpr: the targeted False Positive Rate, attack accuracy will be calculated based on this FPRs. |
| 61 | + If not supplied, get_roc_for_fpr will be computed for `0.001` FPR. |
| 62 | + :param target_model_labels: Original labels, if provided the Accuracy and threshold will be calculated per each |
| 63 | + class separately. |
| 64 | + :return: list of tuples the contains (original label (if target_model_labels is provided), |
| 65 | + Achieved FPR, TPR, Threshold). |
| 66 | + """ |
| 67 | + |
| 68 | + if attack_proba.shape[0] != attack_true.shape[0]: |
| 69 | + raise ValueError("Number of rows in attack_pred and attack_true do not match") |
| 70 | + if target_model_labels is not None and attack_proba.shape[0] != target_model_labels.shape[0]: |
| 71 | + raise ValueError("Number of rows in target_model_labels and attack_pred do not match") |
| 72 | + |
| 73 | + results = [] |
| 74 | + |
| 75 | + if target_model_labels is not None: |
| 76 | + values, _ = np.unique(target_model_labels, return_counts=True) |
| 77 | + for v in values: |
| 78 | + idxs = np.where(target_model_labels == v)[0] |
| 79 | + fpr, tpr, thr = _calculate_roc_for_fpr(y_proba=attack_proba[idxs], |
| 80 | + y_true=attack_true[idxs], |
| 81 | + targeted_fpr=targeted_fpr) |
| 82 | + results.append((v, fpr, tpr, thr)) |
| 83 | + else: |
| 84 | + fpr, tpr, thr = _calculate_roc_for_fpr(y_proba=attack_proba, |
| 85 | + y_true=attack_true, |
| 86 | + targeted_fpr=targeted_fpr) |
| 87 | + results.append((fpr, tpr, thr)) |
| 88 | + |
| 89 | + return results |
| 90 | + |
| 91 | + |
| 92 | +def get_roc_for_multi_fprs( |
| 93 | + attack_proba: np.ndarray, |
| 94 | + attack_true: np.ndarray, |
| 95 | + targeted_fprs: np.ndarray, |
| 96 | +) -> Tuple[List[FPR], List[TPR], List[THR]]: |
| 97 | + """ |
| 98 | + Compute the attack ROC based on the targeted FPRs. This implementation supports only binary |
| 99 | + attack prediction labels. The returned list of THRESHOLDs defines the decision threshold on the attack |
| 100 | + probabilities (meaning if p < THRESHOLD predict 0, otherwise predict 1) for each provided fpr |
| 101 | +
|
| 102 | + | Related paper link: https://arxiv.org/abs/2112.03570 |
| 103 | +
|
| 104 | + :param attack_proba: Predicted attack probabilities. |
| 105 | + :param attack_true: True attack labels. |
| 106 | + :param targeted_fprs: the set of targeted FPR (False Positive Rates), attack accuracy will be calculated based on |
| 107 | + these FPRs. |
| 108 | + :return: list of tuples that (TPR, Threshold, Achieved FPR). |
| 109 | + """ |
| 110 | + |
| 111 | + if attack_proba.shape[0] != attack_true.shape[0]: |
| 112 | + raise ValueError("Number of rows in attack_pred and attack_true do not match") |
| 113 | + |
| 114 | + tpr = list() |
| 115 | + thr = list() |
| 116 | + fpr = list() |
| 117 | + |
| 118 | + for t_fpr in targeted_fprs: |
| 119 | + res = _calculate_roc_for_fpr(y_proba=attack_proba, y_true=attack_true, targeted_fpr=t_fpr) |
| 120 | + |
| 121 | + fpr.append(res[0]) |
| 122 | + tpr.append(res[1]) |
| 123 | + thr.append(res[2]) |
| 124 | + |
| 125 | + return fpr, tpr, thr |
0 commit comments