Skip to content

Commit 16bd3f0

Browse files
committed
xy to tikz: triangular commuting diagram of two monos
1 parent 0e6632e commit 16bd3f0

File tree

1 file changed

+12
-2
lines changed

1 file changed

+12
-2
lines changed

subgroups.tex

Lines changed: 12 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -85,8 +85,18 @@ \subsection{Subgroups as monomorphisms}
8585
\begin{lemma}
8686
\label{lem:setofsubgroups}
8787
Let $G$ be a group and $(H,i_H,!),(H',i_{H'},!):\typemono_G$ be two monomorphisms into $G$. The identity type $(H,i_H,!)\eqto{}(H',i_{H'},!)$ is equivalent to
88-
\marginnote{$$\xymatrix{H\ar[rr]^f_\simeq\ar[dr]_{i_H}&&H'\ar[dl]^{i_{H'}}\\
89-
&G&}$$}
88+
\marginnote{
89+
\[
90+
\begin{tikzpicture}[scale=1.5]
91+
\path (-1,0) node (H) {$H$}
92+
(1,0) node (H') {$H'$}
93+
(0,-1) node (G) {$G$};
94+
\draw[->] (H) -- node[above] {$f$} node[below] {$\simeq$} (H');
95+
\draw[->] (H) -- node[below left] {$i_H$} (G);
96+
\draw[->] (H') -- node[below right] {$i_{H'}$} (G);
97+
\end{tikzpicture}
98+
\]
99+
}
90100
$$\sum_{f:\Hom(H,H')}\isEq(\US f)\times (i_{H'}\eqto{}i_H f)$$ and is a proposition.
91101
In particular, the type $\typemono_G$ of monomorphisms into $G$ is a set.
92102
\end{lemma}

0 commit comments

Comments
 (0)