Complexity Oscillations in Infinite Binary Sequences

PER MARTIN-LÖF

We shall consider finite and infinite binary sequences obtained by tossing an ideal coin, failure and success being represented by 0 and 1, respectively. Let $s_n = x_1 + x_2 + \cdots + x_n$ be the frequency of successes in the sequence $x_1 x_2 \ldots x_n$. Then, for an arbitrary but fixed n , we know that the deviation of s_n from its expected value $n/2$ is of the order of magnitude \sqrt{n} provided we neglect small probabilities. On the other hand, if we consider the initial segments of one and the same infinite sequence $x_1 x_2 \ldots x_n \ldots$, the law of the iterated logarithm tells us that from time to time the deviation $s_n - n/2$ will be essentially bigger than \sqrt{n} , the precise order of magnitude being $\sqrt{n \log \log n}$. In other words, there will be ever recurring moments *n* when the initial segment $x_1 x_2 ... x_n$, considered as an element of the population of all binary sequences of the fixed length n , is highly non random.

According to Martin-Löf 1966, the conditional complexity $K(x_1, x_2...x_n|n)$ in the sense of Kolmogorov 1965 may be regarded as a universal measure of the randomness of the sequence $x_1 x_2 ... x_n$ considered as an element of the population of all binary sequences of length n , and, if we, to be more precise, define the sequence $x_1 x_2 ... x_n$ to be random on the level $\varepsilon = 2^{-c}$ if $K(x_1 x_2 ... x_n | n) \ge n - c$, then the proportion of the population made up by the elements that are random on the level ε is greater than $1-\varepsilon$. We shall show that the phenomenon described in the previous paragraph is general in the sense that it occurs when the randomness of $x_1 x_2 ... x_n$ is measured by $K(x_1 x_2 ... x_n | n)$ instead of the deviation of s_n from *n/2,* the latter representing just one aspect of the randomness of the sequence $x_1 x_2 ... x_n$.

Theorem 1. *Let f be a recursive function such that*

$$
\sum_{n=1}^{\infty} 2^{-f(n)} = +\infty.
$$

Then, for every binary sequence $x_1 x_2 \ldots x_n \ldots$,

$$
K(x_1 x_2 \ldots x_n | n) < n - f(n)
$$

for infinitely many n.

Note that, in contrast to the law of the iterated logarithm and related theorems of probability theory, the assertion of Theorem 1 holds for *all* sequences $x_1x_2...x_n...$ and not only with probability one.

In an earlier version of this paper (Martin-L6f 1965) the theorem was proved for the unconditional complexity $K(x_1 x_2 ... x_n)$ instead of the conditional complexity $K(x_1 x_2 \ldots x_n | n)$. Since $K(x_1 x_2 \ldots x_n | n) \le K(x_1 x_2 \ldots x_n) + c$ for some con226 P. Martin-L6f:

stant c but not vice versa, the earlier form of the theorem is slightly stronger than the present one.

Proof. We first replace f by a slightly more rapidly growing recursive function g such that

$$
\sum_{n=1}^{\infty} 2^{-g(n)} = +\infty
$$

and $\mathbf{r} = \mathbf{r} \cdot \mathbf{r}$

$$
g(n)-f(n)\uparrow +\infty
$$
 as $n\to\infty$.

For example, put $n_0 = 0$ and let n_{m+1} be the smallest integer greater than n_m such that

$$
\sum_{n=1}^{n_{m+1}} 2^{-f(n)} \geq 2^m, \qquad m=0, 1,
$$

We can then define g by putting

$$
g(n) = f(n) + m \quad \text{if } n_m < n \le n_{m+1}.
$$

Consider now the tree

of all finite binary sequences, those of the same length being ordered as indicated from the top to the bottom with the extra convention that 00... 0 is to follow after 11... 1. For every $n = 0, 1, ...$ we shall define a certain set A_n of binary sequences of length n. A_0 is to contain the empty sequence \Box . Suppose now that

$$
A_0, ..., A_m \neq \emptyset
$$
, $A_{m+1} = ... = A_{n-1} = \emptyset$

have been defined already, and let $x_1 x_2 ... x_m$ be the last sequence in A_m . If $g(n) < n$, then A_n is to contain the $2^{n-g(n)}-1$ sequences of length *n* that follow immediately after $x_1 x_2 ... x_m 11 ... 1$, and, if $g(n) \ge n$, then A_n is to be empty.

Letting μ denote the coin tossing measure, we have

$$
\mu(A_n) = \begin{cases} 2^{-g(n)} - 2^{-n} & \text{if } g(n) < n \\ 0 & \text{if } g(n) \ge n \end{cases}
$$

for $n = 1, 2, \ldots$, so that, under all circumstances,

$$
\mu(A_n) \ge 2^{-g(n)} - 2^{-n}.
$$

Consequently,

$$
\sum_{n=1}^{\infty} \mu(A_n) = +\infty
$$

which forces the sets $A_1, A_2, ..., A_n, ...$ to circle around the tree of finite binary sequences an infinite number of times. Therefore, if $x_1 x_2 \dots x_n \dots$ is a fixed infinite sequence, the initial segment $x_1 x_2 ... x_n$ will belong to A_n for infinitely many n.

Let $B(p, n)$ be an algorithm which enumerates A_n as the program p runs through \Box , 0, 1, 00, 01, ... until A_n is exhausted. When the length of p is $\geq n-g(n)$ we may let *B(p, n)* remain undefined. Clearly,

$$
K_B(x_1x_2\ldots x_n|n) < n-g(n)
$$

if and only if $x_1 x_2 ... x_n$ belongs to A_n . On the other hand, by the fundamental theorem of Kolmogorov 1965,

$$
K(x_1 x_2 \ldots x_n | n) \le K_B(x_1 x_2 \ldots x_n | n) + c
$$

for some constant c , and g was constructed such that

$$
g(n) \geq f(n) + c
$$

if $n > n_c$. Consequently, for every infinite sequence $x_1 x_2 ... x_n ...$,

$$
K(x_1 x_2 \ldots x_n | n) < n - f(n)
$$

for infinitely many n as was to be proved.

The construction carried out in the course of the proof is similar to one used by Borel 1919 in connection with a problem of diophantine approximations.

Theorem 2. *Let f be such that*

$$
\sum_{n=1}^{\infty} 2^{-f(n)} < +\infty.
$$

Then, with probability one,

$$
K(x_1 x_2 \dots x_n | n) \ge n - f(n)
$$

for all but finitely many n.

Proof. The number of sequences of length *n* for which

$$
K(x_1 x_2 \ldots x_n | n) < n - f(n)
$$

is less than $2^{n-f(n)}$. Thus, the probability that this inequality is satisfied is less than $2^{-f(n)}$, and the theorem now follows from the lemma of Borel and Cantelli.

Theorem 3. *Let f be a recursive function such that*

$$
\sum_{n=1}^{\infty} 2^{-f(n)}
$$

is recursively convergent. Then, if $x_1 x_2 ... x_n ...$ is random in the sense of Martin-*L6f* 1966,

 $K(x_1 x_2 ... x_n | n) \geq n - f(n)$

for all but finitely many n.

Proof. That $\sum 2^{-s(m)}$ is recursively convergent means that there is a recursive n=l sequence $n_1, n_2, \ldots, n_m, \ldots$ such that

$$
\sum_{n_m+1}^{\infty} 2^{-f(n)} \leq 2^{-m}, \quad m=1, 2,
$$

Let U_m be the union of all neighbourhoods $x_1 x_2 ... x_n$ for which $n > n_m$ and $K(x_1 x_2 ... x_n | n) < n-f(n)$. Since the latter relation is recursively enumerable, $U_1, U_2, \ldots, U_m, \ldots$ is a recursive sequence of recursively open sets. Furthermore,

$$
\mu(U_m) < \sum_{n_m+1}^{\infty} 2^{-f(n)} \le 2^{-m}
$$

so that $\left(\cdot \right) U_m$ is a constructive null set in the sense of Martin-Löf 1966 and $m=1$ hence contained in the maximal constructive null set whose elements are precisely the non random sequences.

Let f be a (not necessarily recursive) function such that

$$
\sum_{n=1}^{\infty} 2^{-f(n)} < +\infty.
$$

Then, the set of all sequences $x_1 x_2 \ldots x_n \ldots$ such that

K($x_1 x_2 ... x_n | n \ge n-f(n)$

for all but finitely many n is not measurable in the sense of Brouwer 1919, except in the trivial case when $n-f(n)$ is bounded. Suppose namely that it were Brouwer measurable. Its measure in Brouwer's sense would then have to equal one and, in particular, be positive. Hence, it would contain a recursive sequence $e_1 e_2 ... e_n ...$ But for a recursive sequence $e_1 e_2 ... e_n ...$ there exists a constant c such that

$$
K(e_1 e_2 \dots e_n | n) \leq c
$$

for all *n*. On the other hand, $K(e_1 e_2 ... e_n | n) \geq n-f(n)$ for all but finitely many *n* so that $n-f(n)$ must be bounded.

Theorem 4. *With probability one, there exists a constant c such that*

$$
K(x_1 x_2 \dots x_n | n) \ge n - c
$$

for infinitely many n.

Proof. Let A_{cn} denote the set of infinite sequences $x_1 x_2 ... x_n ...$ for which $K(x_1 x_2 ... x_n | n) \geq n - c$. Then

$$
\mu\left(\bigcup_{n=m}^{\infty} A_{cn}\right) \geq \mu(A_{cm}) > 1 - 2^{-c}
$$

so that

$$
\mu\left(\bigcap_{m=1}^{\infty}\bigcup_{n=m}^{\infty}A_{cn}\right)\geq 1-2^{-c}
$$

Consequently,

$$
\mu\left(\bigcup_{c=1}^{\infty}\bigcap_{m=1}^{\infty}\bigcup_{n=m}^{\infty}A_{cn}\right)=1
$$

as was to be proved.

Theorem 5. *If there exists a constant c such that*

$$
K(x_1 x_2 \dots x_n | n) \geq n - c
$$

for infinitely many n, then the sequence $x_1 x_2 \ldots x_n \ldots$ *is random in the sense of Martin-LOf* 1966.

Proof. Let $m_U(x_1 x_2 ... x_n)$ denote the critical level of $x_1 x_2 ... x_n$ with respect to the universal sequential test constructed by Martin-Löf 1966. Since a sequential test is so much more a test without the sequentiality condition, there is a constant c such that

$$
m_U(x_1 x_2 \dots x_n) \leq m(x_1 x_2 \dots x_n) + c
$$

where $m(x_1 x_2 ... x_n)$ denotes the non sequential critical level. On the other hand, $m(x_1 x_2 ... x_n)$ and $n-K(x_1 x_2 ... x_n | n)$ differ at most by a constant. Consequently,

$$
m_U(x_1x_2...x_n) \leq n - K(x_1x_2...x_n|n) + c
$$

for some other constant c so that

$$
\lim_{n\to\infty}m_U(x_1x_2\ldots x_n)\leq \liminf_{n\to\infty}\left(n-K(x_1x_2\ldots x_n|n)\right)+c.
$$

Thus, if the assumption of the theorem

$$
\liminf_{n \to \infty} \left(n - K(x_1 x_2 \dots x_n | n) \right) < +\infty
$$

is satisfied, then

$$
\lim_{n\to\infty}m_U(x_1x_2\ldots x_n)<+\infty
$$

which means precisely that the sequence $x_1 x_2 \ldots x_n \ldots$ is random.

Combining Theorem 3 and Theorem 5, we arrive at the following conclusion.

If f is a recursive function such that $\sum 2^{-J(n)}$ converges recursively and $n=$

$$
K(x_1 x_2 \ldots x_n | n) \geq n - c
$$

for some constant c and infinitely many n , then

$$
K(x_1 x_2 \dots x_n | n) \ge n - f(n)
$$

for all but finitely many n. This result, which shows the relation between the upward and downward oscillations of the complexity, was announced without proof by Martin-Löf, 1965.

References

Borel, É.: Sur la classification des ensembles de mesure nulle. Bull. Soc. math. France 47, 97-125 (1919).

Brouwer, L. E.J.: Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. Zweiter Teil. Verhdl. Nederl. Akad. Wet. Afd. Natuurk. Sect. I, 12, 7, 3-33 (1919).

Kolmogorov, A.N.: Three approaches to the definition of the notion "amount of information" [Russian]. Probl. Peredači Inform. 1, 3-11 (1965).

Martin-Löf, P.: On the oscillation of the complexity of infinite binary sequences [Russian]. Unpublished (1965).

- The definition of random sequences. Inform. and Control 9, 602-619 (1966).

P. Martin-L6f Barnhusgatan 4 S-111 23 Stockholm Sweden

(Received March 16, 1970)