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EXACT TESTS, C O N F I D E N C E  R E G I O N S  
AND E S T I M A T E S  

ABSTRACT. This paper proposes a uniform method for constructing tests, confidence 
regions and point estimates which is called exact since it reduces to Fisher's so-called 
exact test in the case of the hypothesis of independence in a 2 x 2 contingency table. All 
the wellknown standard tests based on exact sampling distributions are instances of the 
exact test in its general form. The likelihood ratio and ×2 tests as well as the maximum 
likelihood estimate appears as asymptotic approximations to the corresponding exact 
procedures. 

A statistic t(x) on a discrete sample space X is simply a function which is such 
that the set 

X t  = ( x  l t ( x )  = t )  

is finite for all choices of t in the range of t(x). Let f( t)  denote the number of 

elements in Xt.  To say that an outcome x is described by a statistic t(x) is 

tantamount  to saying that x can be considered as drawn at random from the 

set X t where t = observed value of t(x). 
A reduetive hypothesis asserts that for the purpose of describing an 

outcome x the statistic t(x) may be reduced to a statistic u(x) = u(t(x)) which 
induces a coarser partitioning of the sample space. Let 

g(u) = ~ 1= ~ f ( t )  
x t 

u(t(x))--u u(t)--u 

denote the number of outcomes x such that u(x) = u(t(x)) = u. 
According to the exact test criterion, the smaller the number f ( t (x))  of  

outcomes is that realize the observed value of t(x), the greater is the 

discrepancy between the outcome x and the hypothesis that t(x) can be 

reduced to u(x) = u(t(x)). Thus the critical level with respect to the exact test 
equals e(t(x)) where 

1 f ( t ' )  
e(t) = ~ - 

x '  g(u)  t' g(u)  " 
f ( r  (x ' ) )  <~f(t) f ( t ' )  < f ( t )  

In the continuous case, X will typically be (an open subset o 0 a Euclidean 

space and t(x) a continuously differentiable mapping into a Euclidean space 
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of lower dimension such that the determinant det(JJ ' )  where 

J= \Txj! 

vanishes at most on a set of  Lebesgue measure zero which we assume to be 
deleted from X. The function f ( t)  may then be defined by the formula 

dot f ( t )  = ~ xt  1 
X/det(JJ') 

where a t is the surface measure on Xt  = ( x I fix) = t}. With this change in the 
definition of f(t), what has been said above carries over immediately to the 
continuous case. In particular, the exact test orders the sample points x on 
the surface u(x) = u(t(x)) = u according to their associated values of  f ( t ( x ) ) .  

Now, it is a fact that all the wellknown standard tests based on exact 
sampling distributions can be derived from the exact test criterion formulated 
above, In particular, this is so for 

the test of independence in a contingency table, 

tests of  homogeneity for the binomial, multinomial, Poisson, 
geometric, normal and exponential distributions as well as for 
Rasch's item analysis, 

Student's t-test, 

various tests in the analysis of variance, 

Hotelling's multivariate T-test and 

the Rayleigh test. 

For a detailed verification of this fact, see Martin-L6f (1970). Here I shall 
only consider two very simple examples. 

Example 1. Test of independence in a 2 x 2 contingency table. Let 

1 2 total_ 

1 nil n12 hi. 

2 n21 n22 n2. 

to t a l  n.  1 n 2  n . .  = n 

be an ordinary four fold table and put 



and 

Then 

and 

EXACT TESTS 

t = (n l l , n12 ,n21 ,n22 )  

197 

u = u ( t ) = ( n l . , n 2 . , n . l , n . z ) .  

f(O = 
n! 

nl t!nz2[n21!n22! 

n! n! g ( u ) = - -  
na.!n2.[  n . l !n .2!  

so that the exact test criterion tells us to reject the hypothesis that t can be 
reduced to u, which is the usual hypothesis of independence, provided the 
hypergeometric probability 

f(O 
g(u) 

is too small. This is Fisher's so-called exact test of independence in a 2 x 2 
table. 

Example  2. Testing g = 0 for a normal sample. Let  x l ,  • • • ,  xn  be a sample 
from a normal distribution and put 

and 

Then 

and 

t = ( t l ,  t2) = x i ,  E x  
1 ] 

n 

u = ~ x ~ .  
1 

= 7r(n- l ) /2  ( n -  3)/2 

7rn l 2 
g(u)  = - - 7 - c  u (n /2) -  1. 
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The exact test criterion tells us to reject the hypothesis that t can be reduced 
to u if the ratio 

f ( t )  

g(u) 

is too small, or, equivalently, if 

s/vc~ 

is too big. So we have recovered Student's t-test for the hypothesis that/~ = 0 
for a normal sample. 

I want to supplement the abovementioned fact by the fo l lowing proposal.  

Simply accept as a fundamental principle that the smaller the value off(t(x)) ,  
the more does the observation x contradict the hypothesis that t ( x )  can be 
reduced to u(x)  = u( t (x ) ) .  By fundamental principle, I mean a principle that it 
does not seem possible to reduce to any other more basic or convincing 
principles. 

From the present point of view, the likelihood ratio and X 2 criteria are 
important because they provide manageable asymptotic approximations to 
the exact test and not because they are immediately convincing in themselves. 
To derive these asymptotic approximations in the simplest case, suppose X to 
be a finite discrete sample space and put 

Xn = x n = x x . . . x X  

II 

and 

¢l 

tn(Xl ,  . . . ,Xn)  = ~ t(Xi) 
1 

where t ( x )  is a fixed function from X into Z r. Then 

f.(t) =- f "* ( t ) .  

Suppose we want to test the reductive hypothesis that t n (X l ,  • . , ,  Xn) can be 
reduced to 

U(tn(Xl . . . . .  Xn)) = ~ u ( t ( x i ) )  
1 

where u(t)  is a homomorphism from Z r to Z p with p < r .  By change of 
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coordinates, we may assume u( t )  to be simply the left projection which takes 
t = (u, v) into u. Then 

g.(u) --g~*(u) 

where 

g(u) = $ f(u,  v). 

The exact test orders the sample points according to the value of the ratio 

f n ( t )  

gn(U)" 

Introduce the exponential families 

e a . tn(X 1 . . . . .  Xn) 
~(a)" 

and 

I eb .Un(X ~ . . . . .  Xn ) 
~(b)" 

corresponding to the full and reduced models, respectively, and decompose the 
parameter vector a = (b, c) in the same way as t = (u, v). Then we see that the 
parametric distribution of  the reduced model is obtained from the parametric 
distribution of the full model by putting c = 0 so that, in particular, 

~(b) = ~(b, 0). 

The likelihood ratio with respect to the hypothesis e = 0 equals 

= en(H(g(t /n))-Y ' t (g  (u/n), 0)) 

where a n ( t ) = ~ ( t / n )  and bn (u )  = b ( u / n )  are the maximum likelihood esti- 
mates in the respective models and 

H(a)  = log ¢(a)  - a . m ( a )  

with 

m ( a )  = Ea ( t )  = grad tog ~o(a) 

is the Gibbsian entropy. 
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That the exact test reduces asymptotically to the likelihood ratio test is 
apparent from the following approximation theorem which is proved in 
Martin-LSf (1970). As n ~ +,~ 

fn(t) - k  .t" l x / /detPV(bn(u) 'O)P'  ( l  + O ( 1 ) )  
- det V(a.(t)) 

uniformly when ~n(t) = "  a(t/n) is bounded. Here q = r - p is the number of 
degrees of freedom of the hypothesis, 

= Va o(t) = 
log 

k ~alaaj ! 

and P is the left projection from R r = R p x R q to R p. Furthermore, Taylor 
expansion of  log X(t) = log X(u, v) in v around the point v = Qm(~(u),O), 
where Q is the right projection from R r = R p x R q to R q, shows that 

+ terms of third and higher order 

where 

×2 (t) = i t  - m(a(u) ,  0))'v(a(u), 0) -1 i t  - m(&u) ,  0)) 

= (V - Qm(b(u), O))'QV(b(u), 0) -1Q'(v - Qm(b(u), 0)). 

These resuIts justify the asymptotic use of the likelihood ratio and X 2 tests on 
the basis of the fundamental principle formulated above. 

Suppose now that the range of t(x) is of the form U x V and consider the 
hypothesis that t(x)= (u(x), v(x)) can be reduced to u(x). As above, the 
critical level with respect to the exact test of  this hypothesis equals (in the 

e(t)  = e(u, v) = 

discrete case) 

~,v'_._~) 
v' ~u) 

f(u,v')<f(u,v) 

If the reduced model fits, we are ( t -  e)-cer ta in  that v is such that 
e(u, v) > e, that is, that 

v ~ VAu)  = ( v I e(u, v) > e) .  

Conversely, suppose that we can observe v but not u. By the Neyman 
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principle, we are then (1 - e) -certain that 

u ~ V~(v) = (u I v ~ V~(u)) 
= (u I e(u, v) > e) 

provided the reduced model fits. Ue(v) for 0 < e <  1 is the family of  exact 
confidence regions for u. 

We define the (set of) exact estimate(s) of u to be the intersection of  the 
exact confidence regions, 

~:(v)= n V~(v) = {u I e(u, v) = 1) 
e < l  

= u I the distribution ~ has mode at v . 

This is what the fundamental principle (of ordering the sample points 
according to the value of the ratio fl, u, v)]g(u)) leads to when applied to the 
problem of estimation (or prediction). In the discrete case, U(v) normally 
consists of several points whereas, in the continuous case, it reduces to a 
single point ~(v). 

The considerations leading to the exact estimate are similar to those 
motivating the notion of universality introduced by Barndorff-Nielsen 
(1973). The exact mathematical relationship is this. The family of dis- 
tributions J~u, v)/g(u) indexed by u is universal if and only if ~r(v) ¢1 ¢ for all 
values of v. 

The exact estimate should be compared with the (set of) maximum 
likelihood estimate(s) 

(J(v) = { u [ u . . f (u ,  v) ] max,mlzes ~ ]  . 

Observe, however, that, when we apply the Neyman procedure to the exact 
test, it is not the maximum likelihood estimate but the exact estimate that we 
are led to. 

Example 3. Suppose that we have made a sequence of Bernoulli trials 
x l ,  • •. • Xn with a total of 2;~xi = t successes and that we want to predict 
ENx i = T for N >  n. The exact estimate T(t) consists of those values o f t  for 
which the hypergeometric distribution 
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has its mode at the observed value of t. For N = n + 1 we get in particular 

/~( t )  = 

n 
(t} i f t < ~ ,  

n 
( t , t  + 1} i f t = ~ ,  

n 
( t + l }  i f t > -  

2 '  

provided n is even, and 

f ( t )  -- 

n - 1  
{t} if t < -  

2 

n - 1  n + l  
( t , t +  1} i f t =  o r -  

2 2 

n + l  
( t + l }  i f t > - -  

2 

provided n is odd. The maximum likelihood predictor, on the other hand, is 
given by 

~ ( t )  = 

(t} if t <  n 
2 

n 
( t , t  + 1} i f t = -  

2 

n 
( t + l }  i f t > -  

2 

irrespective of whether n is even or odd. 
Let us now turn to the more usual form of the problem of estimation, 

namely that of parameter estimation. Again, I shall consider the simple case 
of a sequence of outcomes 

X I ,  . . . ~ X n ~ X n + l ~  . . . .  X N 

from a finite discrete sample space X and statistics of the form 

n N 

t = E t (x i ) ,  T = ~ t ( x i ) ,  
I 1 
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where t(x) is a fixed function from X to Z r. Let as before f(t) denote the 
number of outcomes x such that t(x) = t, and consider the hypothesis (of 
homogeneity between the two samples Xl . . . . .  x n and Xn+ l . . . . .  XN) that 
the pair of statistics (t, T) can be reduced to T alone. According to the exact 
test criterion, we shall consider the ratio 

f n ( t ) f N _ n ( T -  t) 

fN (T)  

where 

fn(t)  =.fn*(t), 

and reject the hypothesis if this ratio is too small. Also, from the exact test, 
the Neyman procedure described above allows us to derive the family of 
exact confidence regions Te(t ) and the exact predictor l'(t). 

Now, it is a theorem (proved in Martin-LSf (1970)) that, if N ~  ~ and T 
varies with N in such a way that 

T 
-+ re(a) = grad log ~o(a), 

then 

Yn( t ) fN-n(T-  t) 1 
ea " % ( t ) .  

f N ( r )  n 

Hence the problem of predicting T is turned into the problem of estimating 
the parameter a in the exponential family that appears in the limit. In 
particular, the exact predictor T(t) is turned into 

~(t )  = ~n( t )  = { a l the distribution --[-1- ea " tfn(t) has mode at t } 

which is the exact estimate as originally introduced by H~Sglund (1971). 

Example 4. Let xl  . . . . .  x n be the outcomes of a sequence of Bernoulli 
trials with success probability 0, and let t = Z~x i be the total number of 
successes. The exact estimate 0(t) as defined above consists of  those values of  
0 for which the binomial distribution 

(t)o  l o n-' 
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has its mode at t. Thus 

~(t)= n + l '  n +  " 

In the continuous case, )t(t) normally consists of the single point 

~(t) = -grad log ¢(t). 

Example 5. 
t = (q ,  t2) where 

n 

tl = :?-,xi and 
1 

Then, as in Example 2 above 

zr(n - 1)12 

Let x i ,  • . . ,  Xn be a sample from a normal distribution and put 

so that 

n - 3 t~ 
t/ tl ~ ' 

n 

t~ '  
n 

n - 3  

2 

/'1 

t~ -- ~ x~. 
1 

which, via the relations 

# 1 
a l  = ' - ~  and a2 = o 202 

( t  2 _ ~ _ ) ( n -  3)I2 

g i v e s  

=~ and ~2 ..... !3~(x~-2)  2. 
n - -  1 

The asymptotic behaviour of the exact estimate An(t  ) as compared with 
the maximum likelihood estimate C~n(t)=a(t/n)has been determined by 
H6glund (1971). Restrict an(t) --- ~(t/n) to an arbitrary compact subset of the 
interior of the natural parameter space of the exponential family. Then, in 
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the discrete case, ,~n(t) is nonempty and compact for n sufficiently large and 

max l a - ~ n ( t )  l = O ( 1 )  
aEJ,,~t) 

uniformly as n-~ oo. And, in the continuous case, under a mild regularity 
condition, fftn(t ) consists of the single point an(t ) = -grad logfn(t)  if n is 
sufficiently large and 

uniformly as n ~ ~. This, together with the fact that the random error of 
dn(t) is of the order of magnitude 1 / ~ ,  shows that the exact estimate may 
be approximated asymptotically by the maximum likelihood estimate. From 
the point of view adopted in the present paper, H6glund's theorem should be 
considered as a justification of the asymptotic use of  the maximum likelihood 
estimate on the basis of the fundamental principle formulated above 
conjoined with the Neyman principle for constructing confidence regions and 
point estimates. This justification of the maximum likelihood estimate is, of 
course, quite different from the usual justification in terms of asymptotic 
minimum variance properties. 

Summing up, it has been my purpose to draw attention to certain (in the 
discrete case) combinatorially defined quantities as being conceptually more 
fundamental then their more wellknown parametrical counterparts. 

combinatorial p~ametrical 

hypothesis exact test likelihood ratio and ×2 
testing tests 

estimation exact estimate maximum likelihood 
estimate 

entropy H(t) = log f(t) H(a) =/~a (-log Pa) 
= l o g  ~ o ( a )  - a • m ( a )  

redundancy -log e (t) 
R(t) = - -  

log g(u) 
H(a) 

R(a) = 1 
H(b(a), O) 

In this table, the last row refers to the notion of redundancy as discussed in 
detail in Martin-L6f (1973). Corresponding to each row there is an 
approximation theorem which shows that the combinatorially defined 
quantity under suitable asymptotic conditions may be replaced by its 
parametric counterpart. As mentioned above, these approximation theorems 
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can be found, in the case of the first, third and fourth rows, in Martin-L6f 

(1970) and (1973),and, in the case of the second row, in H6glund (1971). 

University o f  S tockholm 
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