-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexperiments.py
156 lines (106 loc) · 4.1 KB
/
experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from concurrent.futures import ThreadPoolExecutor, wait
import numpy as np
import deglib
from deglib.builder import EvenRegularGraphBuilder
def main():
samples = 1000
dims = 8
data = np.random.random((samples, dims)).astype(np.float32)
# data = data / np.linalg.norm(data, axis=1)[:, None] # L2 normalize
graph = deglib.graph.SizeBoundedGraph.create_empty(data.shape[0], data.shape[1], 16, deglib.Metric.L2)
builder = deglib.builder.EvenRegularGraphBuilder(graph, extend_k=32, extend_eps=0.01, improve_k=0)
for i, vec in enumerate(data):
vec: np.ndarray
builder.add_entry(i, vec)
builder.build(callback='progress')
valid_labels = np.random.choice(graph.size(), size=5, replace=False)
query = np.random.random(dims).astype(np.float32)
results, dists = graph.search(query, filter_labels=valid_labels, eps=0.0, k=8)
print(results)
print('indices:', results.shape, results.dtype)
print('valid:', valid_labels.shape)
print('all results in labels:', np.all(np.isin(results, valid_labels)))
def main2():
# constants
samples, dims = 10_000, 256
# build index
data = np.random.random((samples, dims)).astype(np.float32)
index = deglib.builder.build_from_data(data, extend_eps=0.1, callback='progress')
# search
query = np.random.random(dims).astype(np.float32)
result_indices, dists = index.search(query, eps=0.1, k=16)
print(result_indices)
print(dists)
def dump_data(seed):
np.random.seed(seed)
samples = 100
dims = 128
data = np.random.random((samples, dims)).astype(np.float32)
dim_row = np.zeros((samples, 1), dtype=np.int32) + dims
print(data.shape, dim_row.shape)
data_to_dump = np.concatenate((dim_row, data.view(np.int32)), axis=1)
print(data_to_dump.shape, data_to_dump.dtype)
data_to_dump.tofile('crash_data.fvecs')
print('data dumped to crash_data.fvecs')
def do_build_with_remove(seed, edges_per_vertex):
np.random.seed(seed)
samples = 100
dims = 128
# edges_per_vertex = 2 # samples // 10
data = np.random.random((samples, dims)).astype(np.float32)
# data = deglib.repository.fvecs_read('crash_data.fvecs')
graph = deglib.graph.SizeBoundedGraph.create_empty(
data.shape[0], data.shape[1], edges_per_vertex, deglib.Metric.L2
)
builder = deglib.builder.EvenRegularGraphBuilder(graph, extend_k=30, extend_eps=0.2, improve_k=30)
for label, vec in enumerate(data):
vec: np.ndarray
builder.add_entry(label, vec)
# remove half of the vertices
for label in range(0, data.shape[0], 2):
builder.remove_entry(label)
builder.build(callback='progress')
KNOWN_CRASHES = {
(1, 10)
}
def do_all():
for i in range(100):
for epv in range(2, 34, 2):
if (i, epv) in KNOWN_CRASHES:
print('skipping seed:', i, ' epv:', epv)
else:
print('seed:', i, ' epv:', epv)
do_build_with_remove(i, epv)
def build_graph(jobname, data, dim):
print('starting', jobname)
graph = deglib.graph.SizeBoundedGraph.create_empty(1_000_000, dim, edges_per_vertex=8)
print(graph)
builder = EvenRegularGraphBuilder(graph, improve_k=0, extend_eps=0, extend_k=8)
print(builder)
builder.add_entry(range(data.shape[0]), data)
builder.build()
class FinishPrinter:
def __init__(self, jobname: str):
self.jobname = jobname
def __call__(self, fut):
print('finish', self.jobname)
def test_free_memory():
dim = 512
data = np.random.random((100_000, dim)).astype(np.float32)
jobs = 2
with ThreadPoolExecutor(max_workers=jobs) as executor:
futures = []
for i in range(10):
jobname = 'job {}'.format(i)
print('start: {}'.format(jobname))
future = executor.submit(build_graph, jobname, data, dim)
future.add_done_callback(FinishPrinter(jobname))
futures.append(future)
wait(futures)
if __name__ == '__main__':
main()
# main()
# do_build_with_remove(1, 10)
# do_all()
# dump_data(1)
# test_free_memory()