-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathda_sets_prec.py
411 lines (364 loc) · 14.4 KB
/
da_sets_prec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
from random import sample
from re import I
from urllib.request import urlretrieve
import os
import multiprocessing
import zipfile
import numpy as np
from PIL import Image
from torch.utils.data import Dataset
import torch
import requests
import tarfile
# from unrar import rarfile
# CIFAR-10-C: wget https://zenodo.org/record/2535967/files/CIFAR-10-C.tar
def untar(fname, dirs):
t = tarfile.open(fname)
t.extractall(path=dirs)
# untar("/home/dycpu1/gyh/pycharm/badge1/data/CIFAR-10-C.tar", "/home/dycpu1/gyh/pycharm/badge1/data/")
def unzip(savepath, filename):
print(os.path.join(savepath, filename))
zip_file = zipfile.ZipFile(os.path.join(savepath, filename))
zip_list = zip_file.namelist() # 得到压缩包里所有文件
for f in zip_list:
zip_file.extract(f, savepath) # 循环解压文件到指定目录
zip_file.close()
# unzip('data/digit5', 'Digit-Five.zip')
# mnist
# # train: 55000
# # test: 10000
# mnist_m
# # train: 55000
# # test: 10000
# svhn
# # train: 73257
# # test: 26032
# syn
# # train: 25000
# # test: 9000
# usps
# # train: 7438
# # test: 1860
# under "data": 1. download rarlinux-3.8.0.tar.gz 2. rar/unrar x -o- -y cross-dataset.rar ./
# rar/unrar x -o- -y office_caltech_10.rar ./
# un_rar('data/office_caltech_10.rar')
# un_rar("data/cross-dataset.rar", outdir="data/cross-dataset")
# unrar("data/cross-dataset.rar")
###
def download(url, savepath):
"""
download file from internet
:param url: path to download from
:param savepath: path to save files
:return: None
"""
def reporthook(a, b, c):
"""
显示下载进度
:param a: 已经下载的数据块
:param b: 数据块的大小
:param c: 远程文件大小
:return: None
"""
print("\rdownloading: %5.1f%%" % (a * b * 100.0 / c), end="")
if not os.path.exists(savepath):
os.makedirs(savepath)
filename = os.path.basename(url)
# 判断文件是否存在,如果不存在则下载
if not os.path.isfile(os.path.join(savepath, filename)):
print('Downloading data from %s' % url)
urlretrieve(url, os.path.join(savepath, filename), reporthook=reporthook)
print('\nDownload finished!')
else:
print('File already exsits!')
# 获取文件大小
filesize = os.path.getsize(os.path.join(savepath, filename))
# 文件大小默认以Bytes计, 转换为Mb
print('File size = %.2f Mb' % (filesize/1024/1024))
if '.zip' in filename:
unzip_path = filename[:-4]
unzip_path = os.path.join(savepath, unzip_path)
# print(unzip_path, os.path.join(savepath, filename))
if not os.path.exists(unzip_path):
# os.makedirs(unzip_path)
'''
基本格式:zipfile.ZipFile(filename[,mode[,compression[,allowZip64]]])
mode:可选 r,w,a 代表不同的打开文件的方式;r 只读;w 重写;a 添加
compression:指出这个 zipfile 用什么压缩方法,默认是 ZIP_STORED,另一种选择是 ZIP_DEFLATED;
allowZip64:bool型变量,当设置为True时可以创建大于 2G 的 zip 文件,默认值 True;
'''
zip_file = zipfile.ZipFile(os.path.join(savepath, filename))
zip_list = zip_file.namelist() # 得到压缩包里所有文件
for f in zip_list:
zip_file.extract(f, savepath) # 循环解压文件到指定目录
zip_file.close() # 关闭文件,必须有,释放内存
print('\nUnzip finished!')
else:
print('\n Unzipped!')
def set_download(path='data', dataset="/office31", url='https://wjdcloud.blob.core.windows.net/dataset/OFFICE31.zip'):
savepath = path+dataset
if os.path.exists(savepath):
print('Already download '+dataset)
else:
download(url, savepath)
# set_download(path='data', dataset="/office31", url='https://wjdcloud.blob.core.windows.net/dataset/OFFICE31.zip')
# # office31 imageCLEF digit-five/office+caltech
# set_download(path='data', dataset="/imageCLEF", url='https://wjdcloud.blob.core.windows.net/dataset/image_CLEF.zip')
############
from sklearn.model_selection import train_test_split
def split_data(file_name):
source_list = open(file_name).readlines()
source_train, source_val = train_test_split(source_list, test_size=0.2)
print(len(source_train))
print(len(source_val))
source_train_file_name = file_name.replace('list', 'train_list')
source_val_file_name = file_name.replace('list', 'val_list')
source_train_file = open(source_train_file_name, "w")
for line in source_train:
source_train_file.write(line)
source_val_file = open(source_val_file_name, "w")
for line in source_val:
source_val_file.write(line)
# path ="data/imageCLEF/image_CLEF/image_path/"
# file_name_list = [path+item for item in ['b_list.txt', 'c_list.txt', 'i_list.txt','p_list.txt']]
# for file_name in file_name_list:
# split_data(file_name)
# path ="data/imageCLEF/image_CLEF/image_path/"
# file_name_list = [path+item for item in ['b_list.txt', 'c_list.txt', 'i_list.txt','p_list.txt']]
# for file_name in file_name_list:
# split_data(file_name)
def image_list(file_dir):
# get list about all images
domain_list = os.listdir(file_dir)
class_list = os.listdir(file_dir+'/'+domain_list[0])
class_dict ={}
i=0
for cls in class_list:
class_dict[cls]=i
i+=1
# print(domain_list)
# print(class_list)
# L=[]
for domain in domain_list:
domain_list_file_name = file_dir+'/'+domain+'_list.txt'
f=open(domain_list_file_name,'w')
for root, dirs, files in os.walk(file_dir+'/'+domain):
for file in files:
# print(file)
if os.path.splitext(file)[1] == '.jpg': # 想要保存的文件格式
# pass
cls = root.split('/')[-1]
label=class_dict[cls]
target = os.path.join(root, file)+'\t'+str(label)+'\n'
# print(target)
f.write(target)
f.close()
# L.append(os.path.join(root, file))
return
# image_list("data/office31/OFFICE31")
# print(L[:5])
# image_list("data/office_caltech")
# file_name_list = ['data/office31/OFFICE31/amazon_list.txt', 'data/office31/OFFICE31/webcam_list.txt', 'data/office31/OFFICE31/dslr_list.txt']
# 2253
# 564
# 636
# 159
# 398
# 100
# file_name_list = ['data/office_caltech/amazon_list.txt', 'data/office_caltech/caltech_list.txt', 'data/office_caltech/dslr_list.txt', 'data/office_caltech/webcam_list.txt']
# 766
# 192
# 898
# 225
# 125
# 32
# 236
# 59
# for file_name in file_name_list:
# split_data(file_name)
##########
def make_dataset(image_list, labels):
if labels:
len_ = len(image_list)
images = [(image_list[i].strip(), labels[i, :]) for i in range(len_)]
else:
if len(image_list[0].split()) > 2:
images = [(val.split()[0], np.array([int(la) for la in val.split()[1:]])) for val in image_list]
else:
images = [(val.split()[0], int(val.split()[1])) for val in image_list]
return images
def rgb_loader(path):
# path = '../' + path
with open(path, 'rb') as f:
with Image.open(f) as img:
return img.convert('RGB')
def l_loader(path):
# path = '../' + path
with open(path, 'rb') as f:
with Image.open(f) as img:
return img.convert('L')
def collect_data(path="/home/dycpu1/gyh/pycharm/TransCal/data", train=True, mode ='RGB'):
if train:
txt_name = '_train_list.txt'
else:
txt_name = '_val_list.txt'
image_path = path+'/office-home/'
domain_name =["Art", "Clipart", "Product", "Real_World"]
image_list=[open(image_path+name_i+txt_name).readlines() for name_i in domain_name]
dm_sample_num = [len(list_i) for list_i in image_list]
dm = [i*np.ones(dm_sample_num[i]) for i in range(len(dm_sample_num))]
dm_sample_num = torch.Tensor(dm_sample_num)
dm = torch.Tensor(np.concatenate(dm, axis=0))
X = []
Y = []
image_path2 = "/home/dycpu1/gyh/pycharm/TransCal"
for i in range(len(image_list)):
imgs_labels = make_dataset(image_list[i], labels=None)
img_paths = [image_path2+i[0] for i in imgs_labels]
labels = [i[1] for i in imgs_labels]
X +=img_paths
Y +=labels
Y = torch.from_numpy(np.array(Y)).long()
X = np.array(X)
return X, Y, dm, dm_sample_num # X, Y: numpy, dm, dm_sample_num:torch.Tensor
def collect_office31(path="data", train=True, mode ='RGB'):
if train:
txt_name = '_train_list.txt'
else:
txt_name = '_val_list.txt'
image_path = path+'/office31/OFFICE31/'
domain_name =["amazon", "dslr", "webcam"]
image_list=[open(image_path+name_i+txt_name).readlines() for name_i in domain_name]
dm_sample_num = [len(list_i) for list_i in image_list]
dm = [i*np.ones(dm_sample_num[i]) for i in range(len(dm_sample_num))]
dm_sample_num = torch.Tensor(dm_sample_num)
dm = torch.Tensor(np.concatenate(dm, axis=0))
X = []
Y = []
for i in range(len(image_list)):
imgs_labels = make_dataset(image_list[i], labels=None)
img_paths = [i[0] for i in imgs_labels]
labels = [i[1] for i in imgs_labels]
X +=img_paths
Y +=labels
Y = torch.from_numpy(np.array(Y)).long()
X = np.array(X)
return X, Y, dm, dm_sample_num # X, Y: numpy, dm, dm_sample_num:torch.Tensor
# X, Y, dm, dm_sample_num = collect_office31()
# print(X[:5])
def collect_ofct(path="data", train=True, mode ='RGB'):
if train:
txt_name = '_train_list.txt'
else:
txt_name = '_val_list.txt'
image_path = path+'/office_caltech/'
domain_name =["amazon", 'caltech', "dslr", "webcam"]
image_list=[open(image_path+name_i+txt_name).readlines() for name_i in domain_name]
dm_sample_num = [len(list_i) for list_i in image_list]
dm = [i*np.ones(dm_sample_num[i]) for i in range(len(dm_sample_num))]
dm_sample_num = torch.Tensor(dm_sample_num)
dm = torch.Tensor(np.concatenate(dm, axis=0))
X = []
Y = []
for i in range(len(image_list)):
imgs_labels = make_dataset(image_list[i], labels=None)
img_paths = [i[0] for i in imgs_labels]
labels = [i[1] for i in imgs_labels]
X +=img_paths
Y +=labels
Y = torch.from_numpy(np.array(Y)).long()
X = np.array(X)
return X, Y, dm, dm_sample_num # X, Y: numpy, dm, dm_sample_num:torch.Tensor
# X, Y, dm, dm_sample_num = collect_ofct()
# print(X.shape)
def collect_clef(path="data", train=True, mode ='RGB'):
if train:
txt_name = '_train_list.txt'
else:
txt_name = '_val_list.txt'
image_path = path+'/imageCLEF/image_CLEF/image_path/'
domain_name =["b", "c", "i", "p"]
image_list=[open(image_path+name_i+txt_name).readlines() for name_i in domain_name]
dm_sample_num = [len(list_i) for list_i in image_list]
dm = [i*np.ones(dm_sample_num[i]) for i in range(len(dm_sample_num))]
dm_sample_num = torch.Tensor(dm_sample_num)
dm = torch.Tensor(np.concatenate(dm, axis=0))
X = []
Y = []
image_path2 = path+'/imageCLEF/image_CLEF/'
for i in range(len(image_list)):
imgs_labels = make_dataset(image_list[i], labels=None)
labels = [i[1] for i in imgs_labels]
if i<2:
img_paths = [image_path2+i[0] for i in imgs_labels]
img_paths = [img_paths[i].replace(img_paths[i].split('/')[-2], str(labels[i])) for i in range(len(img_paths))]
else:
img_paths = [image_path2+imgs_labels[i][0][:2] +str(labels[i])+'/'+imgs_labels[i][0][2:] for i in range(len(imgs_labels))]
X +=img_paths
Y +=labels
Y = torch.from_numpy(np.array(Y)).long()
X = np.array(X)
return X, Y, dm, dm_sample_num # X, Y: numpy, dm, dm_sample_num:torch.Tensor
# X, Y, dm, dm_sample_num = collect_clef()
# print(X[:5])
# for i in X:
# print(i)
# print(X.shape, Y.shape, dm.shape, dm_sample_num) (1920,) torch.Size([1920]) torch.Size([1920]) tensor([480., 480., 480., 480.])
def split_val_test(te):
X, Y, dm, dm_sample_num = te
index = np.array([i for i in range(dm.size(0))])
sample_num=1725
dm_idx = np.array([int(dm[i].numpy()) for i in range(dm.size(0))],dtype=int)
index_val = []
index_test = []
dm_sample_num_val = []
dm_sample_num_test = []
np.random.seed(1234)
for i in range(6):
index_i = index[dm_idx==i]
index_i = index_i[np.random.permutation(len(index_i))]
index_i_val, index_i_test = index_i[:sample_num], index_i[sample_num:]
index_val.append(index_i_val)
index_test.append(index_i_test)
dm_sample_num_val.append(len(index_i_val))
dm_sample_num_test.append(len(index_i_test))
index_val = np.concatenate(index_val, axis=0)
index_test = np.concatenate(index_test, axis=0)
val = X[index_val], Y[index_val], dm[index_val], torch.Tensor(dm_sample_num_val)
test = X[index_test], Y[index_test], dm[index_test], torch.Tensor(dm_sample_num_test)
return val, test
class DataHandler_da(Dataset):
def __init__(self, X, Y, dm, lb, transform=None, mode = 'RGB'):
self.X = X
self.Y = Y
self.dm = dm
self.lb = lb
self.transform = transform
if mode == 'RGB':
self.loader = rgb_loader
elif mode == 'L':
self.loader = l_loader
def __getitem__(self, index):
x, y, dm, lb = self.X[index], self.Y[index], self.dm[index], self.lb[index]
x = self.loader(x)
if self.transform is not None:
x = self.transform(x)
return x, y, dm, lb, index
def __len__(self):
return len(self.X)
class DataHandler_da_ft(Dataset):
def __init__(self, X, Y, dm, lb, transform=None, mode = 'RGB'):
self.X = X
self.Y = Y
self.dm = dm
self.lb = lb
# self.transform = transform
if mode == 'RGB':
self.loader = rgb_loader
elif mode == 'L':
self.loader = l_loader
def __getitem__(self, index):
x, y, dm, lb = self.X[index], self.Y[index], self.dm[index], self.lb[index]
return x, y, dm, lb, index
def __len__(self):
return len(self.X)