-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_ofct.py
431 lines (357 loc) · 17.5 KB
/
run_ofct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
from asyncio.log import logger
import numpy as np
import sys
import gzip
# import openml
import os
import argparse
from dataset import get_dataset, get_handler
from model_alpha import get_net
import query_strategies
import resnet
import random
from networks import *
from sklearn.preprocessing import LabelEncoder
import torch.nn.functional as F
from torch import nn
from torchvision import transforms
import torch
import pdb
from scipy.stats import zscore
import logging
from query_strategies import RandomSampling, BadgeSampling, ISAL_Sampling, FMSampling, \
CMSampling, BaselineSampling, LeastConfidence, MarginSampling, \
EntropySampling, CoreSet, ActiveLearningByLearning, \
LeastConfidenceDropout, MarginSamplingDropout, EntropySamplingDropout, \
KMeansSampling, KCenterGreedy, BALDDropout, CoreSet, \
AdversarialBIM, AdversarialDeepFool, ActiveLearningByLearning, \
RandomSampling1d, MarginSampling1d, BadgeSampling1d, \
CMSampling1d, FMSampling1d, ganSampling
import multiprocessing
import pre_process
# code based on https://github.com/ej0cl6/deep-active-learning"
os.environ['TORCH_HOME']='/home/dycpu1/gyh/pycharm/badge1/pretrained_models/'
def one_experiment(opts):
"""
gpu_id
1 dataset-args: data
(setting of datasets should be in this function, such as batch_size, max_epoch)
1 query strategy-args: query
1 model---(10 rounds)-args:model, lr, etc.
1 seed-args: seed
"""
#pre-1 set model save dirs
opts.out_fold = './result-ofct/' + opts.data + '/' + opts.query +'/' + opts.self_define_name # decided by dataset/query
opts.save_name = opts.out_fold + '/' + opts.model # decided by dataset/query/model
os.system('mkdir -p ' + opts.out_fold) # create dir
print('Train result will be saved in ', opts.out_fold)
#pre-2 log training precess and final results
log_train = opts.save_name+'_'+ str(opts.seed)+ '_train.log' #decided by dataset/query/model/seed
log_final = opts.save_name+'_'+ str(opts.seed)+ '_final.log'
def setup_logger(name, log_file, level=logging.INFO):
"""To setup as many loggers as you want"""
# formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s')
# formatter = logging.Formatter('%(message)s')
handler = logging.FileHandler(log_file)
# handler.setFormatter(formatter)
logger = logging.getLogger(name)
logger.setLevel(level)
logger.addHandler(handler)
return logger
opts.logger_train = setup_logger('train_logger', log_train)
opts.logger_final = setup_logger('final_logger', log_final)
# training setting————————————————————————————————————————————
#1 set gpu
os.environ["CUDA_VISIBLE_DEVICES"] = str(opts.gpu_id)
#2 set dataset
#2-1 dataset defaults
args_pool = {
'office_caltech':
{'n_epoch': 100, 'transform': pre_process.image_test(),
'loader_tr_args':{'batch_size': 32, 'num_workers': 1},
'loader_label_args':{'batch_size': 32, 'num_workers': 1},
'loader_te_args':{'batch_size': 64, 'num_workers': 1},
'optimizer_args':{'lr': 0.01, 'momentum': 0.5},
'transformTest': pre_process.image_test()},
}
opts.args = args_pool[opts.data]
if not os.path.exists(opts.path):
os.makedirs(opts.path)
#2-2 process datasets into array form
if opts.data == 'office_caltech':
opts.resnet_name = "ResNet50" #18
tr, te = get_dataset(opts.data, opts.path, opts=opts)
X_tr, Y_tr, dm_tr, dm_sample_num_tr = tr
X_te, Y_te, dm_te, dm_sample_num_te = te
opts.logger_final.info(['samples',dm_sample_num_tr, dm_sample_num_te])
n_total = len(Y_tr) # total data number
idxs_lb = np.zeros(n_total, dtype=bool) # True if labeled
n_total_te = len(Y_te) # total data number
idxs_lb_te =np.ones(n_total_te, dtype=bool)
train_set = X_tr, Y_tr, dm_tr, idxs_lb
# val_set = X_val, Y_val, dm_val, idxs_lb_val
test_set = X_te, Y_te, dm_te, idxs_lb_te
opts.beta = dm_sample_num_tr/dm_sample_num_tr.sum()
opts.dim = np.shape(X_tr)[1:]
# if type(X_tr[0]) is not np.ndarray:
# X_tr = X_tr.numpy()
handler = get_handler(opts.data)
#3 set model
# opts.args['n_epoch'] =100
if opts.data == 'office_caltech':
opts.class_num=10
opts.domain_num=4
opts.weight_decay = 0.0005
opts.lr = 0.0001 #02 #0.0002
opts.beta1=0.9
opts.T = 10 #4
opts.nh = 256
# opts.lr = 0.001 #0.001
# opts.momentum=0.9
opts.use_bottleneck = True
# opts.nz = 256
opts.new_cls = True
else:
raise ValueError
net = get_net()(opts)
#4 set query strategy and collect all of things into a whole function of training
# set up the specified sampler
if opts.query == 'random': # random sampling
strategy = RandomSampling(train_set, test_set, handler, net, opts)
elif opts.query == 'grads': # Gradient with Discriminator Score (GraDS) sampling
strategy = ganSampling(train_set, test_set, handler, net, opts)
elif opts.query == 'entropy': # entropy-based sampling
strategy = EntropySampling(train_set, test_set, handler, net, opts)
elif opts.query == 'margin': # margin-based sampling
strategy = MarginSampling(train_set, test_set, handler, net, opts)
elif opts.query == 'badge': # batch active learning by diverse gradient embeddings
strategy = BadgeSampling(train_set, test_set, handler, net, opts)
elif opts.query == 'cm': # cluster-margin sampling
strategy = CMSampling(train_set, test_set, handler, net, opts)
elif opts.query == 'fm': # free energy+margin sampling
strategy = FMSampling(train_set, test_set, handler, net, opts)
elif opts.query == 'random1d': # random sampling, treat all domains as a single domain
strategy = RandomSampling1d(train_set, test_set, handler, net, opts)
elif opts.query == 'margin1d': # margin-based sampling, treat all domains as a single domain
strategy = MarginSampling1d(train_set, test_set, handler, net, opts)
elif opts.query == 'badge1d': # batch active learning, treat all domains as a single domain
strategy = BadgeSampling1d(train_set, test_set, handler, net, opts)
elif opts.query == 'cm1d': # cluster-margin sampling, treat all domains as a single domain
strategy = CMSampling1d(train_set, test_set, handler, net, opts)
elif opts.query == 'fm1d': # free energy+margin sampling, treat all domains as a single domain
strategy = FMSampling1d(train_set, test_set, handler, net, opts)
else:
print('choose a valid acquisition function', flush=True)
raise ValueError
#5 print hyperparameters
for k in list(vars(opts).keys()):
opts.logger_final.info('%s: %s' % (k, vars(opts)[k])) # save hyperpara
# 6 training process
# print data dir and strategy name
opts.logger_train.info(opts.data)
opts.logger_train.info(type(strategy).__name__)
# query parameters
opts.logger_train.info('number of labeled pool: {}'.format(opts.nStart))
opts.logger_train.info('number of unlabeled pool: {}'.format(n_total - opts.nStart))
opts.logger_train.info('number of testing pool: {}'.format(len(Y_te)))
NUM_ROUND = int((opts.nEnd - opts.nStart)/ opts.nQuery)
####Training Rounds####
# Round 0
# generate initial labeled pool
# query
# opts.logger_train.info('Round {}'.format(0))
def set_beta(idx_lb):
l =[]
for i in range(opts.domain_num):
l.append(sum(idx_lb[dm_tr==i]))
return (torch.Tensor(l)/torch.Tensor(l).sum()).cuda()
opts.logger_train.info("Round {} train ratio:{}".format(0, opts.beta*opts.domain_num))
### function to randomly label data in the round 0
def random_query0(alpha_new):
"""
alpha: a list contain weights of every domain
rd: round
"""
lb_num = opts.nStart
new_lb_idx = []
existed_label = np.array([sum(idxs_lb[dm_tr==i]) for i in range(opts.domain_num)])
label_per_domain = np.array([int(lb_num*alpha_new[i]) for i in range(alpha_new.shape[0])])
rest_label = lb_num-label_per_domain.sum() # rest budget
if rest_label !=0:
rest_point_num = np.array([(lb_num*alpha_new[i])%1 for i in range(opts.domain_num)])
y = np.argsort(-rest_point_num) # for big to small
label_per_domain[y[:rest_label]] +=1
per_domain_num = label_per_domain-existed_label # the number of data should be labeled in every domain
# print("alpha, alpha_new, per_domain_num, label_per_domain, existed_label", alpha, alpha_new, per_domain_num, label_per_domain, existed_label)
for i in range(opts.domain_num):
i_idxs_no_label = np.where((dm_tr==i)&(idxs_lb==0))[0]
# labelling number of current round, current domain
new_add = i_idxs_no_label[np.random.permutation(len(i_idxs_no_label))][:per_domain_num[i]]
new_lb_idx.append(new_add)
print(i, per_domain_num[i], len(new_add))
print(new_add)
new_lb_idx = [new_lb_idx[i][j] for i in range(len(new_lb_idx))
for j in range(len(new_lb_idx[i]))]
return new_lb_idx
output = random_query0(np.ones(opts.domain_num)/opts.domain_num)#strategy.query(opts.beta.numpy(), 0)
# output = strategy.query(opts.beta.numpy(), 0)
q_idxs = output
idxs_lb[q_idxs] = True
# update
net.beta = set_beta(idxs_lb) # training labeled data ratio
opts.logger_train.info('beta:{}'.format(net.beta*opts.domain_num))
strategy.update(idxs_lb)
# train
strategy.train(0)
# Round 1-NUM_ROUND
for rd in range(1, NUM_ROUND+1):
# opts.logger_train.info('Round {}'.format(rd))
opts.logger_train.info("Round {} mu: {}".format(rd, net.get_mu()*opts.domain_num))
# query
output = strategy.query(net.get_mu(), rd) # mu is ratio to distribute labels to domains
q_idxs = output
idxs_lb[q_idxs] = True
net.beta = set_beta(idxs_lb)
opts.logger_train.info('beta: {}'.format(net.beta*opts.domain_num))
# # report weighted accuracy
# corr = (strategy.predict(X_tr[q_idxs], torch.Tensor(Y_tr.numpy()[q_idxs]).long(),
# torch.Tensor(dm_tr[q_idxs]), rd-1
# )).numpy() == Y_tr.numpy()[q_idxs]
# update
strategy.update(idxs_lb)
strategy.train(rd)
if sum(~strategy.idxs_lb) < opts.nQuery:
sys.exit('too few remaining points to query')
# print(sum(strategy.idxs_lb), sum(~strategy.idxs_lb)) # 600 59400 ~取反
opts.logger_train.info("Round {} mu:{}".format(100, net.get_mu()*opts.domain_num))
return
if __name__ == "__main__":
def pretrain(para_list):
parser = argparse.ArgumentParser()
parser.add_argument('--gpu_id', type=int, default=para_list[0], help="device id to run")# gpu
parser.add_argument('--data', help='datasets', type=str, default=para_list[1]) # dataset
parser.add_argument('--domain_num', help='the number of domains', type=int, default=4) # dataset
parser.add_argument('--rotate_angle', help='the rotation angle of every domain', type=int, default=30) # dataset
parser.add_argument('--query', help='acquisition algorithm', type=str, default=para_list[2]) # query
parser.add_argument('--nQuery', help='number of points to query in a batch', type=int, default=para_list[3]) # query
parser.add_argument('--nStart', help='number of points to start', type=int, default=para_list[4]) # query
parser.add_argument('--nEnd', help = 'total number of labels', type=int, default=para_list[5]) # query
parser.add_argument('--model', help='pure, alpha, DA, alDA', type=str, default=para_list[6]) #model
parser.add_argument('--lr', help='learning rate', type=float, default=para_list[7]) # model
parser.add_argument('--nEmb', help='number of embedding dims (mlp)', type=int, default=256) # model
parser.add_argument('--nz', help='number of embedding dims (conv)', type=int, default=100) # model
parser.add_argument('--dropout', help='dropout rate', type=float, default=0.0) # model
parser.add_argument('--seed', help='random seed', type=int, default=para_list[8]) # model
parser.add_argument('--path', help='data path', type=str, default='data')
opts = parser.parse_args()
# set seed
def set_seed(seed):
"""Set all random seeds."""
if seed is not None:
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False # false: not optimize speed, suit to dynamic net
set_seed(opts.seed)
if 'DA' in opts.model:
opts.lambda_gan = para_list[9]
else:
opts.lambda_gan = 0
if 'alpha' in opts.model:
opts.alpha_update='acc'
if 'DA' in opts.model: # alphaDA
opts.lambda_A=1
else:
opts.lambda_A = para_list[9] # alpha
else:
opts.lambda_A = 0
if len(para_list) > 10:
opts.domain_num = para_list[10]
domain_str = 'd'+str(opts.domain_num)
opts.diff_cls = False
if opts.diff_cls:
cls_str = 'diff'
else:
cls_str = 'same'
opts.alignment_ablation = False # do not have ablation in this part
opts.third_term_ablation = False
if opts.model=='alphaDA':
opts.self_define_name = domain_str + '_' + cls_str + '_' + str(opts.lambda_gan)+ '_' + str(opts.lambda_A)
else:
opts.self_define_name = domain_str + '_' + cls_str + '_' + str(max(opts.lambda_gan, opts.lambda_A))
if query_method=='grads':
opts.gan_uncertainty = 0.04
if query_method=='fm' or 'fm1d':
opts.eng_w = 0.2 # 0.5
one_experiment(opts)
return
lambda_e = 0
lr = 0.0002
seed_1 = 101
seed_2 = 20
seed_3 = 11
num_init_round = 20
num_per_round = 20
num_round = 5
num_end = num_init_round + num_round*num_per_round
data_name = 'office_caltech' #'MNIST' # 'MNIST' #
query_method = 'random'
da = 2#
alpha = 1#2 same_1 'acc'
alpha_da = 1#same_1 'acc'
# query_method = 'margin'
# da = 2
# alpha = 1#0.1 # , 0.5
# alpha_da = 1
# query_method = 'badge'
# da = 2
# alpha = 1
# alpha_da = 1
# query_method = 'cm'
# da = 2
# alpha = 1
# alpha_da = 0.2
# query_method = 'fm'
# da = 1 #1
# alpha = 1 #1
# alpha_da = 1 #1
# query_method = 'grads'
# da = 2 #1
# alpha = 1 #1
# alpha_da = 1 #1
gpu_pure = 0
gpu_da = 1
gpu_al = 2
gpu_ad = 3
para_list1 = [gpu_pure, data_name, query_method, num_per_round, num_init_round, num_end, 'pure', lr, seed_1]
para_list2 = [gpu_pure, data_name, query_method, num_per_round, num_init_round, num_end, 'pure', lr, seed_2]
para_list3 = [gpu_pure, data_name, query_method, num_per_round, num_init_round, num_end, 'pure', lr, seed_3]
para_list4 = [gpu_da, data_name, query_method, num_per_round, num_init_round, num_end, 'DA', lr, seed_1, da]
para_list5 = [gpu_da, data_name, query_method, num_per_round, num_init_round, num_end, 'DA', lr, seed_2, da]
para_list6 = [gpu_da, data_name, query_method, num_per_round, num_init_round, num_end, 'DA', lr, seed_3, da]
para_list7 = [gpu_al, data_name, query_method, num_per_round, num_init_round, num_end, 'alpha', lr, seed_1, alpha] #1.8
para_list8 = [gpu_al, data_name, query_method, num_per_round, num_init_round, num_end, 'alpha', lr, seed_2, alpha]
para_list9 = [gpu_al, data_name, query_method, num_per_round, num_init_round, num_end, 'alpha', lr, seed_3, alpha]
para_list10 = [gpu_ad, data_name, query_method, num_per_round, num_init_round, num_end, 'alphaDA', lr, seed_1, alpha_da] #1.8
para_list11 = [gpu_ad, data_name, query_method, num_per_round, num_init_round, num_end, 'alphaDA', lr, seed_2, alpha_da]
para_list12 = [gpu_ad, data_name, query_method, num_per_round, num_init_round, num_end, 'alphaDA', lr, seed_3, alpha_da]
p1 = multiprocessing.Process(target=pretrain, args=(para_list1,))
p2 = multiprocessing.Process(target=pretrain, args=(para_list2,))
p3 = multiprocessing.Process(target=pretrain, args=(para_list3,))
p4 = multiprocessing.Process(target=pretrain, args=(para_list4,))
p5 = multiprocessing.Process(target=pretrain, args=(para_list5,))
p6 = multiprocessing.Process(target=pretrain, args=(para_list6,))
p7 = multiprocessing.Process(target=pretrain, args=(para_list7,))
p8 = multiprocessing.Process(target=pretrain, args=(para_list8,))
p9 = multiprocessing.Process(target=pretrain, args=(para_list9,))
p10 = multiprocessing.Process(target=pretrain, args=(para_list10,))
p11 = multiprocessing.Process(target=pretrain, args=(para_list11,))
p12 = multiprocessing.Process(target=pretrain, args=(para_list12,))
ps = [p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12]
for p in ps:
p.start()
for p in ps:
p.join()
# python run3ofct.py > log/ofct_fm8.log&