-
Notifications
You must be signed in to change notification settings - Fork 28
/
tgrs.cpp
244 lines (219 loc) · 9.81 KB
/
tgrs.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#include "tgrs.h"
#include "tictoc.hpp"
void TGRS::mergeClusters(std::vector<int>& clusterIdxs_, const int& idx1_, const int& idx2_){
for(int i = 0; i < clusterIdxs_.size(); i++){
if(clusterIdxs_[i] == idx1_){
clusterIdxs_[i] = idx2_;
}
}
}
std::vector<int> TGRS::findVoxelNeighbors(const int& range_idx_, const int& sector_idx_, const int& azimuth_idx_, int size_){
std::vector<int> neighborIdxs;
if(range_idx_ > RANGE_NUM * 0.6){
size_ = 1;
}
for(int x = range_idx_ - size_; x <= range_idx_ + size_; x++){
if(x > RANGE_NUM -1 || x < 0) {continue;}
for(int y = sector_idx_ - size_; y <= sector_idx_ + size_; y++){
if(y > SECTOR_NUM -1 || y < 0) {continue;}
for(int z = azimuth_idx_ - size_; z <= azimuth_idx_ + size_; z++){
if(z > AZIMUTH_NUM - 1 || z < 0) {continue;}
neighborIdxs.emplace_back(x * SECTOR_NUM + y + z * RANGE_NUM * SECTOR_NUM);
}
}
}
return neighborIdxs;
}
void TGRS::cluster(const std::vector<PointAPRI>& apri_vec_,
std::unordered_map<int, Voxel>& hash_cloud_,
std::unordered_map<int, std::vector<int>>& cluster_vox)
{
int cluster_name = 4;
std::vector<int> clusterIdxs = std::vector<int>(apri_vec_.size(), -1);
TicToc cluster_t;
// vec cluster
for(int i = 0; i < apri_vec_.size(); i++){
PointAPRI apri = apri_vec_[i];
std::unordered_map<int, Voxel>::iterator it_find1;
std::unordered_map<int, Voxel>::iterator it_find2;
std::vector<int> neighbors; // restore a lot of apri-neighbors idxs
it_find1 = hash_cloud_.find(apri.voxel_idx);
if(it_find1 != hash_cloud_.end()){
std::vector<int> neighbor = findVoxelNeighbors(apri.range_idx, apri.sector_idx, apri.azimuth_idx, 1);
for(int k = 0; k < neighbor.size(); k++){
it_find2 = hash_cloud_.find(neighbor[k]);
if(it_find2 != hash_cloud_.end()){
addVec(neighbors, it_find2->second.ptIdx);
}
}
}
neighbors.swap(neighbors);
if(neighbors.size() > 0){
for(int n = 0; n < neighbors.size(); n++){
int oc = clusterIdxs[i];
int nc = clusterIdxs[neighbors[n]];
if(oc != -1 && nc != -1){
if(oc != nc){
mergeClusters(clusterIdxs, oc, nc); // merge
}
}
else{
if(nc != -1){
clusterIdxs[i] = nc;
}
else{
if(oc != -1){
clusterIdxs[neighbors[n]] = oc;
}
}
}
}
}
if(clusterIdxs[i] == -1){
cluster_name ++; // a new class
clusterIdxs[i] = cluster_name; // just encode the cluster name
for(int m = 0; m < neighbors.size(); m++){
clusterIdxs[neighbors[m]] = cluster_name;
}
}
}
// voxels cluster
std::unordered_map<int, std::vector<int>>::iterator it_v;
for(size_t i = 0; i < clusterIdxs.size(); i++){
it_v = cluster_vox.find(clusterIdxs[i]);
if(it_v != cluster_vox.end()){
it_v->second.emplace_back(apri_vec_[i].voxel_idx);
hash_cloud_[apri_vec_[i].voxel_idx].label = it_v->first;
}
else{
std::vector<int> vox_vec;
vox_vec.emplace_back(apri_vec_[i].voxel_idx);
cluster_vox.insert(std::make_pair(clusterIdxs[i], vox_vec));
hash_cloud_[apri_vec_[i].voxel_idx].label = clusterIdxs[i];
}
}
for(auto& it : cluster_vox){
sampleVec(it.second);
}
}
std::pair<PointType, PointType> TGRS::getBoundingBoxOfCloud(const pcl::PointCloud<PointType>::Ptr& cloud_){
PointType point_min, point_max;
pcl::getMinMax3D(*cloud_, point_min, point_max);
return std::make_pair(point_min, point_max);
}
pcl::PointCloud<PointType>::Ptr TGRS::getCloudByVec(const std::vector<int>& vec_, const pcl::PointCloud<PointType>::Ptr& cloud_){
pcl::PointCloud<PointType>::Ptr cloudReturn(new pcl::PointCloud<PointType>());
for(auto &it : vec_){
cloudReturn->points.emplace_back(cloud_->points[it]);
}
return cloudReturn;
}
void TGRS::recognizePD(SSC& ssc){
for(auto& it : ssc.cluster_vox){
std::vector<int> voxIdx;
for(auto& id : it.second){
voxIdx.emplace_back(ssc.hash_cloud[id].ptVoxIdx);
}
pcl::PointCloud<PointType>::Ptr voxels(new pcl::PointCloud<PointType>());
*voxels += *getCloudByVec(voxIdx, ssc.cloud_vox);
std::pair<PointType, PointType> heightPair = getBoundingBoxOfCloud(voxels);
if((heightPair.first.z <= -(SENSOR_HEIGHT - 0.2)) && ((heightPair.second.z + SENSOR_HEIGHT) <= PD_HEIGHT)){
ssc.PD_cluster.emplace_back(it.first);
}
}
std::cout << "There are " << ssc.PD_cluster.size() << " PD objects." << std::endl;
}
void TGRS::trackPD(SSC& ssc_pre, PointTypePose* pose_pre, SSC& ssc_next, PointTypePose* pose_next){
// Step 1: get voxel cloud
pcl::PointCloud<PointType>::Ptr voxCloud_pre(new pcl::PointCloud<PointType>());
*voxCloud_pre += *ssc_pre.cloud_vox;
pcl::PointCloud<PointType>::Ptr voxCloud_next(new pcl::PointCloud<PointType>());
*voxCloud_next += *ssc_next.cloud_vox;
// std::cout << "pre vox cloud size: " << voxCloud_pre->points.size();
// std::cout << "next vox cloud size: " << voxCloud_next->points.size();
// Step 2: transform voxel cloud
Eigen::Affine3f trans_pre = pcl::getTransformation(pose_pre->x, pose_pre->y, pose_pre->z, pose_pre->roll, pose_pre->pitch, pose_pre->yaw);
Eigen::Affine3f trans_next = pcl::getTransformation(pose_next->x, pose_next->y, pose_next->z, pose_next->roll, pose_next->pitch, pose_next->yaw);
Eigen::Affine3f trans_n2p = trans_pre.inverse() * trans_next;
pcl::PointCloud<PointType>::Ptr voxCloud_nextTrans(new pcl::PointCloud<PointType>());
transformPointCloud(voxCloud_next, trans_n2p, voxCloud_nextTrans);
// pcl::io::savePCDFile("/home/yixin-f/fast-lio2/src/data_dy/vox_next.pcd", *voxCloud_next);
// pcl::io::savePCDFile("/home/yixin-f/fast-lio2/src/data_dy/vox_pre.pcd", *voxCloud_pre);
// Step 3: PD projection (tracking)
for(auto& pd : ssc_next.PD_cluster){
std::vector<int> projIdx;
for(auto& voxIdx : ssc_next.cluster_vox[pd]){
PointType voxPt = voxCloud_nextTrans->points[ssc_next.hash_cloud[voxIdx].ptVoxIdx];
float dis = pointDistance2d(voxPt);
float angle = getPolarAngle(voxPt);
float azimuth = getAzimuth(voxPt);
int range_idx = std::ceil((dis - MIN_DIS) / RANGE_RES) - 1;
int sector_idx = std::ceil((angle - MIN_ANGLE) / SECTOR_RES) - 1;
int azimuth_idx = std::ceil((azimuth - MIN_AZIMUTH) / AZIMUTH_RES) -1;
int voxel_idx = azimuth_idx * RANGE_NUM * SECTOR_NUM + range_idx * SECTOR_NUM + sector_idx;
std::vector<int> neighbor = findVoxelNeighbors(range_idx, sector_idx, azimuth_idx, 1);
// choice one: find neighbors
addVec(projIdx, neighbor);
// // choice two: direct ptojection
// projIdx.emplace_back(voxel_idx);
}
sampleVec(projIdx);
std::cout << "cur pd Idx: " << ssc_next.cluster_vox[pd].size() << std::endl;
// Step 4: HD detection
int all = projIdx.size();
int success = 0;
std::unordered_map<int, Voxel>::iterator it_find;
for(auto& proj : projIdx){
it_find = ssc_pre.hash_cloud.find(proj);
if(it_find != ssc_pre.hash_cloud.end()){
success ++;
}
}
float overlapRatio = (float)success / (float)all;
std::cout << "name: " << pd << " success: " << success << " all: " << all << " overlap ratio: " << overlapRatio << std::endl;
if(overlapRatio <= HD_RATIO){
ssc_next.HD_cluster.emplace_back(pd); // PD to HD
}
else{
ssc_next.AS_cluster.emplace_back(pd); // PD to AS
}
}
std::vector<int> AS_ptIdx;
for(auto& as : ssc_next.AS_cluster){
addVec(AS_ptIdx, ssc_next.hash_cloud[as].ptIdx);
}
*ssc_next.cloud_nd += *getCloudByVec(AS_ptIdx, ssc_next.cloud_use);
*ssc_next.cloud_nd += *ssc_next.cloud_g;
std::cout << ANSI_COLOR_GREEN << " PD num: " << ssc_next.PD_cluster.size() << "\n"
<< ANSI_COLOR_RED << " HD num: " << ssc_next.HD_cluster.size() << ANSI_COLOR_RESET << std::endl;
}
void TGRS::saveColorCloud(SSC& ssc, const std::string& path){
pcl::PointCloud<pcl::PointXYZRGB>::Ptr colorCloud(new pcl::PointCloud<pcl::PointXYZRGB>());
cv::RNG rng(12345);
for(auto& it : ssc.cluster_vox){
int r, g, b;
r = rng.uniform(20, 200);
g = rng.uniform(20, 200);
b = rng.uniform(20, 200);
std::vector<int> ptIdx;
for(auto& vox : it.second){
addVec(ptIdx, ssc.hash_cloud[vox].ptIdx);
}
pcl::PointCloud<PointType>::Ptr cloudGrab(new pcl::PointCloud<PointType>());
*cloudGrab += *getCloudByVec(ptIdx, ssc.cloud_use);
for(size_t i = 0; i < cloudGrab->points.size(); i++){
pcl::PointXYZRGB rgb;
rgb.x = cloudGrab->points[i].x;
rgb.y = cloudGrab->points[i].y;
rgb.z = cloudGrab->points[i].z;
rgb.r = r;
rgb.g = g;
rgb.b = b;
colorCloud->points.emplace_back(rgb);
}
}
colorCloud->height = 1;
colorCloud->width = colorCloud->points.size();
std::cout << "segmented cloud size: " << colorCloud->points.size() << std::endl;
pcl::io::savePCDFile(path, *colorCloud);
}