|
| 1 | +/* |
| 2 | + This file is part of cpp-sha256-hmac. |
| 3 | + Copyright (C) 2020 ReimuNotMoe |
| 4 | +
|
| 5 | + This program is free software: you can redistribute it and/or modify |
| 6 | + it under the terms of the MIT License. |
| 7 | +
|
| 8 | + This program is distributed in the hope that it will be useful, |
| 9 | + but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| 11 | +
|
| 12 | + Algorithm credits: https://github.com/jb55/sha256.c |
| 13 | + https://github.com/aperezdc/hmac-sha256 |
| 14 | +
|
| 15 | +*/ |
| 16 | + |
| 17 | +#include "cpp-sha256-hmac.hpp" |
| 18 | + |
| 19 | +#define _SHA256_UNROLL |
| 20 | +#define _SHA256_UNROLL2 |
| 21 | + |
| 22 | +#define U8V(v) ((uint8_t)(v) & 0xFFU) |
| 23 | +#define U16V(v) ((uint16_t)(v) & 0xFFFFU) |
| 24 | +#define U32V(v) ((uint32_t)(v) & 0xFFFFFFFFU) |
| 25 | +#define U64V(v) ((uint64_t)(v) & 0xFFFFFFFFFFFFFFFFU) |
| 26 | + |
| 27 | +#define ROTL32(v, n) \ |
| 28 | + (U32V((uint32_t)(v) << (n)) | ((uint32_t)(v) >> (32 - (n)))) |
| 29 | + |
| 30 | +// tests fail if we don't have this cast... |
| 31 | +#define ROTL64(v, n) \ |
| 32 | + (U64V((uint64_t)(v) << (n)) | ((uint64_t)(v) >> (64 - (n)))) |
| 33 | + |
| 34 | +#define ROTR32(v, n) ROTL32(v, 32 - (n)) |
| 35 | +#define ROTR64(v, n) ROTL64(v, 64 - (n)) |
| 36 | + |
| 37 | + |
| 38 | +#define S0(x) (ROTR32(x, 2) ^ ROTR32(x,13) ^ ROTR32(x, 22)) |
| 39 | +#define S1(x) (ROTR32(x, 6) ^ ROTR32(x,11) ^ ROTR32(x, 25)) |
| 40 | +#define s0(x) (ROTR32(x, 7) ^ ROTR32(x,18) ^ (x >> 3)) |
| 41 | +#define s1(x) (ROTR32(x,17) ^ ROTR32(x,19) ^ (x >> 10)) |
| 42 | + |
| 43 | +#define blk0(i) (W[i] = data[i]) |
| 44 | +#define blk2(i) (W[i&15] += s1(W[(i-2)&15]) + W[(i-7)&15] + s0(W[(i-15)&15])) |
| 45 | + |
| 46 | +#define Ch(x,y,z) (z^(x&(y^z))) |
| 47 | +#define Maj(x,y,z) ((x&y)|(z&(x|y))) |
| 48 | + |
| 49 | +#define a(i) T[(0-(i))&7] |
| 50 | +#define b(i) T[(1-(i))&7] |
| 51 | +#define c(i) T[(2-(i))&7] |
| 52 | +#define d(i) T[(3-(i))&7] |
| 53 | +#define e(i) T[(4-(i))&7] |
| 54 | +#define f(i) T[(5-(i))&7] |
| 55 | +#define g(i) T[(6-(i))&7] |
| 56 | +#define h(i) T[(7-(i))&7] |
| 57 | + |
| 58 | + |
| 59 | +#ifdef _SHA256_UNROLL2 |
| 60 | + |
| 61 | +#define R(a,b,c,d,e,f,g,h, i) h += S1(e) + Ch(e,f,g) + K[i+j] + (j?blk2(i):blk0(i));\ |
| 62 | + d += h; h += S0(a) + Maj(a, b, c) |
| 63 | + |
| 64 | +#define RX_8(i) \ |
| 65 | + R(a,b,c,d,e,f,g,h, i); \ |
| 66 | + R(h,a,b,c,d,e,f,g, (i+1)); \ |
| 67 | + R(g,h,a,b,c,d,e,f, (i+2)); \ |
| 68 | + R(f,g,h,a,b,c,d,e, (i+3)); \ |
| 69 | + R(e,f,g,h,a,b,c,d, (i+4)); \ |
| 70 | + R(d,e,f,g,h,a,b,c, (i+5)); \ |
| 71 | + R(c,d,e,f,g,h,a,b, (i+6)); \ |
| 72 | + R(b,c,d,e,f,g,h,a, (i+7)) |
| 73 | + |
| 74 | +#else |
| 75 | + |
| 76 | +#define R(i) h(i) += S1(e(i)) + Ch(e(i),f(i),g(i)) + K[i+j] + (j?blk2(i):blk0(i));\ |
| 77 | + d(i) += h(i); h(i) += S0(a(i)) + Maj(a(i), b(i), c(i)) |
| 78 | + |
| 79 | +#ifdef _SHA256_UNROLL |
| 80 | + |
| 81 | +#define RX_8(i) R(i+0); R(i+1); R(i+2); R(i+3); R(i+4); R(i+5); R(i+6); R(i+7); |
| 82 | + |
| 83 | +#endif |
| 84 | + |
| 85 | +#endif |
| 86 | + |
| 87 | +static const uint32_t K[64] = { |
| 88 | + 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, |
| 89 | + 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, |
| 90 | + 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, |
| 91 | + 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, |
| 92 | + 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, |
| 93 | + 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, |
| 94 | + 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, |
| 95 | + 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, |
| 96 | + 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, |
| 97 | + 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, |
| 98 | + 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, |
| 99 | + 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, |
| 100 | + 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, |
| 101 | + 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, |
| 102 | + 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, |
| 103 | + 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 |
| 104 | +}; |
| 105 | + |
| 106 | +static void sha256_transform(uint32_t *state, const uint32_t *data) { |
| 107 | + uint32_t W[16]; |
| 108 | + unsigned j; |
| 109 | +#ifdef _SHA256_UNROLL2 |
| 110 | + uint32_t a,b,c,d,e,f,g,h; |
| 111 | + a = state[0]; |
| 112 | + b = state[1]; |
| 113 | + c = state[2]; |
| 114 | + d = state[3]; |
| 115 | + e = state[4]; |
| 116 | + f = state[5]; |
| 117 | + g = state[6]; |
| 118 | + h = state[7]; |
| 119 | +#else |
| 120 | + uint32_t T[8]; |
| 121 | + for (j = 0; j < 8; j++) |
| 122 | + T[j] = state[j]; |
| 123 | +#endif |
| 124 | + |
| 125 | + for (j = 0; j < 64; j += 16) |
| 126 | + { |
| 127 | +#if defined(_SHA256_UNROLL) || defined(_SHA256_UNROLL2) |
| 128 | + RX_8(0); RX_8(8); |
| 129 | +#else |
| 130 | + unsigned i; |
| 131 | + for (i = 0; i < 16; i++) { R(i); } |
| 132 | +#endif |
| 133 | + } |
| 134 | + |
| 135 | +#ifdef _SHA256_UNROLL2 |
| 136 | + state[0] += a; |
| 137 | + state[1] += b; |
| 138 | + state[2] += c; |
| 139 | + state[3] += d; |
| 140 | + state[4] += e; |
| 141 | + state[5] += f; |
| 142 | + state[6] += g; |
| 143 | + state[7] += h; |
| 144 | +#else |
| 145 | + for (j = 0; j < 8; j++) |
| 146 | + state[j] += T[j]; |
| 147 | +#endif |
| 148 | + |
| 149 | + /* Wipe variables */ |
| 150 | + /* memset(W, 0, sizeof(W)); */ |
| 151 | + /* memset(T, 0, sizeof(T)); */ |
| 152 | +} |
| 153 | + |
| 154 | +#undef S0 |
| 155 | +#undef S1 |
| 156 | +#undef s0 |
| 157 | +#undef s1 |
| 158 | + |
| 159 | +using namespace YukiWorkshop::Crypto; |
| 160 | + |
| 161 | +void SHA256::sha256_write_byte_block() { |
| 162 | + uint32_t data32[16]; |
| 163 | + unsigned i; |
| 164 | + for (i = 0; i < 16; i++) |
| 165 | + data32[i] = |
| 166 | + ((uint32_t)(buffer[i * 4 ]) << 24) + |
| 167 | + ((uint32_t)(buffer[i * 4 + 1]) << 16) + |
| 168 | + ((uint32_t)(buffer[i * 4 + 2]) << 8) + |
| 169 | + ((uint32_t)(buffer[i * 4 + 3])); |
| 170 | + sha256_transform(state, data32); |
| 171 | +} |
| 172 | + |
| 173 | +void SHA256::reset() noexcept { |
| 174 | + state[0] = 0x6a09e667; |
| 175 | + state[1] = 0xbb67ae85; |
| 176 | + state[2] = 0x3c6ef372; |
| 177 | + state[3] = 0xa54ff53a; |
| 178 | + state[4] = 0x510e527f; |
| 179 | + state[5] = 0x9b05688c; |
| 180 | + state[6] = 0x1f83d9ab; |
| 181 | + state[7] = 0x5be0cd19; |
| 182 | + count = 0; |
| 183 | +} |
| 184 | + |
| 185 | +void SHA256::__update(SHA256 *p, const void *__data, size_t __len) noexcept { |
| 186 | + auto *data = (uint8_t *)__data; |
| 187 | + |
| 188 | + uint32_t curBufferPos = (uint32_t)p->count & 0x3F; |
| 189 | + while (__len > 0) |
| 190 | + { |
| 191 | + p->buffer[curBufferPos++] = *data++; |
| 192 | + p->count++; |
| 193 | + __len--; |
| 194 | + if (curBufferPos == 64) |
| 195 | + { |
| 196 | + curBufferPos = 0; |
| 197 | + p->sha256_write_byte_block(); |
| 198 | + } |
| 199 | + } |
| 200 | +} |
| 201 | + |
| 202 | + |
| 203 | +void SHA256::__finalize(SHA256 *p, void *__digest) noexcept { |
| 204 | + auto *digest = (uint8_t *)__digest; |
| 205 | + uint64_t lenInBits = (p->count << 3); |
| 206 | + uint32_t curBufferPos = (uint32_t)p->count & 0x3F; |
| 207 | + unsigned i; |
| 208 | + p->buffer[curBufferPos++] = 0x80; |
| 209 | + while (curBufferPos != (64 - 8)) { |
| 210 | + curBufferPos &= 0x3F; |
| 211 | + if (curBufferPos == 0) |
| 212 | + p->sha256_write_byte_block(); |
| 213 | + p->buffer[curBufferPos++] = 0; |
| 214 | + } |
| 215 | + for (i = 0; i < 8; i++) { |
| 216 | + p->buffer[curBufferPos++] = (unsigned char)(lenInBits >> 56); |
| 217 | + lenInBits <<= 8; |
| 218 | + } |
| 219 | + p->sha256_write_byte_block(); |
| 220 | + |
| 221 | + for (i = 0; i < 8; i++) { |
| 222 | + *digest++ = (unsigned char)(p->state[i] >> 24); |
| 223 | + *digest++ = (unsigned char)(p->state[i] >> 16); |
| 224 | + *digest++ = (unsigned char)(p->state[i] >> 8); |
| 225 | + *digest++ = (unsigned char)(p->state[i]); |
| 226 | + } |
| 227 | + |
| 228 | + p->reset(); |
| 229 | +} |
| 230 | + |
| 231 | +void SHA256::update(const void *__data, size_t __len) noexcept { |
| 232 | + __update(this, __data, __len); |
| 233 | +} |
| 234 | + |
| 235 | +void SHA256::finalize(void *__digest) noexcept { |
| 236 | + __finalize(this, __digest); |
| 237 | +} |
| 238 | + |
| 239 | +/* |
| 240 | + * HMAC(H, K) == H(K ^ opad, H(K ^ ipad, text)) |
| 241 | + * |
| 242 | + * H: Hash function (sha256) |
| 243 | + * K: Secret key |
| 244 | + * B: Block byte length |
| 245 | + * L: Byte length of hash function output |
| 246 | + * |
| 247 | + * https://tools.ietf.org/html/rfc2104 |
| 248 | + */ |
| 249 | + |
| 250 | +#define SHA256_DIGEST_SIZE 32 |
| 251 | +#define B 64 |
| 252 | +#define L (SHA256_DIGEST_SIZE) |
| 253 | +#define K (SHA256_DIGEST_SIZE * 2) |
| 254 | + |
| 255 | +#define I_PAD 0x36 |
| 256 | +#define O_PAD 0x5C |
| 257 | + |
| 258 | +void SHA256_HMAC::set_key(const void *__data, size_t __len) { |
| 259 | + |
| 260 | + /* |
| 261 | + * If the key length is bigger than the buffer size B, apply the hash |
| 262 | + * function to it first and use the result instead. |
| 263 | + */ |
| 264 | + |
| 265 | + if (__len > B) { |
| 266 | + __update(this, __data, __len); |
| 267 | + key_buf.resize(SHA256_DIGEST_SIZE); |
| 268 | + __finalize(this, key_buf.data()); |
| 269 | + } else { |
| 270 | + key_buf.insert(key_buf.begin(), (uint8_t *)__data, ((uint8_t *)__data)+__len); |
| 271 | + } |
| 272 | + |
| 273 | + /* |
| 274 | + * (1) append zeros to the end of K to create a B byte string |
| 275 | + * (e.g., if K is of length 20 bytes and B=64, then K will be |
| 276 | + * appended with 44 zero bytes 0x00) |
| 277 | + * (2) XOR (bitwise exclusive-OR) the B byte string computed in step |
| 278 | + * (1) with ipad |
| 279 | + */ |
| 280 | + for (size_t i = 0; i < key_buf.size(); i++) kx[i] = I_PAD ^ key_buf[i]; |
| 281 | + for (size_t i = key_buf.size(); i < B; i++) kx[i] = I_PAD ^ 0; |
| 282 | + |
| 283 | + /* |
| 284 | + * (3) append the stream of data 'text' to the B byte string resulting |
| 285 | + * from step (2) |
| 286 | + * (4) apply H to the stream generated in step (3) |
| 287 | + */ |
| 288 | + __update(this, kx, B); |
| 289 | +} |
| 290 | + |
| 291 | +void SHA256_HMAC::__hmac_finalize(SHA256_HMAC *p, void *__digest) noexcept { |
| 292 | + __finalize(p, __digest); |
| 293 | + /* |
| 294 | + * (5) XOR (bitwise exclusive-OR) the B byte string computed in |
| 295 | + * step (1) with opad |
| 296 | + * |
| 297 | + * NOTE: The "kx" variable is reused. |
| 298 | + */ |
| 299 | + for (size_t i = 0; i < p->key_buf.size(); i++) p->kx[i] = O_PAD ^ p->key_buf[i]; |
| 300 | + for (size_t i = p->key_buf.size(); i < B; i++) p->kx[i] = O_PAD ^ 0; |
| 301 | + |
| 302 | + /* |
| 303 | + * (6) append the H result from step (4) to the B byte string |
| 304 | + * resulting from step (5) |
| 305 | + * (7) apply H to the stream generated in step (6) and output |
| 306 | + * the result |
| 307 | + */ |
| 308 | + |
| 309 | + __update(p, p->kx, B); |
| 310 | + __update(p, __digest, SHA256_DIGEST_SIZE); |
| 311 | + __finalize(p, __digest); |
| 312 | +} |
0 commit comments