Skip to content

Latest commit

 

History

History
43 lines (29 loc) · 4.76 KB

File metadata and controls

43 lines (29 loc) · 4.76 KB

Unsupervision-for-object-detection.github.io

本文主要记录无/弱/半监督的一些论文及其核心思想,同时关注其在目标检测领域的应用

1. Siam-net

paper pub main idea
Leverage Your Local and Global Representations: A New Self-Supervised Learning Strategy.(LoGo) CVPR2022 MLP来取代cosine-sim作为local-local crops的相似度度量(能抓到更rich的local feature)。可附加于simsiam、moco等模型改善其效果
Exploring simple siamese representation learning.(simsiam) CVPR2021 针对一张图片的一对aug-views,交替对one of two branchs进行stop-gradient
Momentum contrast for unsupervised visual representation learning.(moco) CVPR2020 维护一个queue,存储过去mini-batch的represents,与batchsize decouple并得到一个大dictionary;以momentum的方式平滑更新key-encoder。从current mini-batch中构造positive pairs,从queue中构造negative pairs
Improved baselines with momentum contrastive learning.(moco v2) 2020
UniVIP: A Unified Framework for Self-Supervised Visual Pre-training CVPR2022
Revisiting the Transferability of Supervised Pretraining: an MLP Perspective CVPR2022 预训练时,在encoder后面加MLP可以缓解encoder的overfitting,保留更多的intra-class variantion,改善后续迁移学习的效果

1.1. Siamese networks's undesired trivial solution

In un-/self-supervised representation learning field, methods generally involve certain forms of Siamese networks. An undesired trivial solution to Siamese networks is all outputs “collapsing” to a constant. There have been several general strategies for preventing Siamese networks from collapsing:

2. Pre-task design

paper pub main idea
UP-DETR: Unsupervised Pre-training for Object Detection with Transformers. (UP-DERT) CVPR 2021
End-to-end object detection with transformers. (DERT) * ECCV 2020
Unsupervised embedding learning via invariant and spreading instance feature.(Instance-based discrimination tasks) IEEE 2019
Unsupervised feature learning via non-parametric instance discrimination. (Instance-based discrimination tasks) IEEE 2018
Deep clustering for unsupervised learning of visual features. (clustering-based tasks) ECCV 2018

Instancebased discrimination tasks and clustering-based tasks are two typical pretext tasks in recent studies. UP-DETR is a novel pretext task, which aims to pre-train transformers based on the DETR architecture for object detection.

2.1. instance discrimination

将一张图片x进行randomly crop并做augment后得到两个view: x1,x2 (Transformation),认为这两者similar,作为positive pair. 而数据集中其他所有图片都被认为和x1,x2是dissimilar, 作为negative pair.

(positive/negative定义非常灵活)