-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathcal_metrics.py
140 lines (129 loc) · 5.02 KB
/
cal_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# core codes are copy from https://github.com/yangdongchao/AcademiCodec/tree/master/evaluation_metric/calculate_voc_obj_metrics/metrics
import argparse
import os
from pathlib import Path
import librosa
import numpy as np
from pesq import cypesq, pesq
from pystoi import stoi
from tqdm import tqdm
def get_parser():
parser = argparse.ArgumentParser(description="Compute STOI and PESQ measure")
parser.add_argument(
'-r',
'--ref_dir',
required=True,
help="Reference wave folder."
)
parser.add_argument(
'-d',
'--deg_dir',
required=True,
help="Degraded wave folder."
)
parser.add_argument(
'-s',
'--sr',
type=int,
default=16000,
help="encodec sample rate."
)
parser.add_argument(
'-b',
'--bandwidth',
type=float,
default=6,
help="encodec bandwidth.",
)
parser.add_argument(
'-e',
"--ext",
default="wav",
type=str,
help="file extension"
)
parser.add_argument(
"-o",
"--output_result_path",
default="./results/",
type=Path
)
return parser
def calculate_stoi(ref_wav, deg_wav, sr):
"""Calculate STOI score between ref_wav and deg_wav"""
min_len = min(len(ref_wav), len(deg_wav))
ref_wav = ref_wav[:min_len]
deg_wav = deg_wav[:min_len]
stoi_score = stoi(ref_wav, deg_wav, sr, extended=False)
return stoi_score
def calculate_pesq(ref_wav, deg_wav, sr):
"""Calculate PESQ score between ref_wav and deg_wav, we need to resample to 16000Hz first"""
min_len = min(len(ref_wav), len(deg_wav))
ref_wav = ref_wav[:min_len]
deg_wav = deg_wav[:min_len]
nb_pesq_score = pesq(sr, ref_wav, deg_wav, 'nb')
wb_pesq_score = pesq(sr, ref_wav, deg_wav, 'wb')
return nb_pesq_score, wb_pesq_score
def calculate_visqol_moslqo_score(ref_wav,deg_wav,mode='audio'):
"""Perceptual Quality Estimator for speech and audio
you need to follow https://github.com/google/visqol to build & install
Args:
ref_wav (_type_): re
deg_wav (_type_): _description_
mode (str, optional): _description_. Defaults to 'audio'.
"""
try:
from visqol import visqol_lib_py
from visqol.pb2 import similarity_result_pb2, visqol_config_pb2
except ImportError:
print("visqol is not installed, please build and install follow https://github.com/google/visqol")
config = visqol_config_pb2.VisqolConfig()
if mode == "audio":
config.audio.sample_rate = 48000
config.options.use_speech_scoring = False
svr_model_path = "libsvm_nu_svr_model.txt"
elif mode == "speech":
config.audio.sample_rate = 16000
config.options.use_speech_scoring = True
svr_model_path = "lattice_tcditugenmeetpackhref_ls2_nl60_lr12_bs2048_learn.005_ep2400_train1_7_raw.tflite"
else:
raise ValueError(f"Unrecognized mode: {mode}")
config.options.svr_model_path = os.path.join(
os.path.dirname(visqol_lib_py.__file__), "model", svr_model_path)
api = visqol_lib_py.VisqolApi()
api.Create(config)
similarity_result = api.Measure(ref_wav.astype(float), deg_wav.astype(float))
return similarity_result.moslqo
def main():
args = get_parser().parse_args()
stoi_scores = []
nb_pesq_scores = []
wb_pesq_scores = []
if not args.output_result_path.exists():
args.output_result_path.mkdir(parents=True)
with open(f"{args.output_result_path}/pesq_scores.txt","w") as p, open(f"{args.output_result_path}/stoi_scores.txt","w") as s:
for deg_wav_path in tqdm(list(Path(args.deg_dir).rglob(f'*.{args.ext}'))):
relative_path = deg_wav_path.relative_to(args.deg_dir)
ref_wav_path = Path(args.ref_dir) / relative_path.parents[0] /deg_wav_path.name.replace(f'_bw{args.bandwidth}', '')
# ref_wav_path = Path(args.ref_dir) / relative_path.parents[0] /deg_wav_path.name.replace(f'', '')
ref_wav,_ = librosa.load(ref_wav_path, sr=args.sr)
deg_wav,_ = librosa.load(deg_wav_path, sr=args.sr)
stoi_score = calculate_stoi(ref_wav, deg_wav, sr=args.sr)
try:
nb_pesq_score, wb_pesq_score = calculate_pesq(ref_wav, deg_wav, 16000)
nb_pesq_scores.append(nb_pesq_score)
wb_pesq_scores.append(wb_pesq_score)
p.write(f"{ref_wav_path}\t{deg_wav_path}\t{wb_pesq_score}\n")
except cypesq.NoUtterancesError:
print(ref_wav_path)
print(deg_wav_path)
nb_pesq_score, wb_pesq_score = 0, 0
if stoi_score!=1e-5:
stoi_scores.append(stoi_score)
s.write(f"{ref_wav_path}\t{deg_wav_path}\t{stoi_score}\n")
return np.mean(stoi_scores), np.mean(nb_pesq_scores), np.mean(wb_pesq_scores)
if __name__ == '__main__':
mean_stoi, mean_nb_pesq, mean_wb_pesq = main()
print(f"STOI: {mean_stoi}")
print(f"NB PESQ: {mean_nb_pesq}")
print(f"WB PESQ: {mean_wb_pesq}")