-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathceleba_race.py
37 lines (26 loc) · 1.05 KB
/
celeba_race.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import sys
import os
import torch
import torchvision
import numpy as np
from torchvision.datasets import CelebA
from torch.utils.data import Subset
fitz_light = np.load(os.path.expanduser('celebrace/fitz_light.npy'))
fitz_dark = np.load(os.path.expanduser('celebrace/fitz_dark.npy'))
class CelebRace(CelebA):
def __getitem__(self, index):
X, target = super().__getitem__(index)
ind = int(self.filename[index].split('.')[0])
augment = torch.tensor([fitz_light[ind-1] > .501,
fitz_dark[ind-1] > .501,
ind,
1-target[20]], dtype=torch.long)
return X, torch.cat((target, augment))
def unambiguous(dataset, split='train', thresh=.7):
# return only the images which were predicted fitz_light or fitz_dark by >70%
if split == 'train':
n = 162770
else:
n = 19962
unambiguous_indices = [i for i in range(n) if (fitz_light[i] > thresh or fitz_dark[i] > thresh)]
return Subset(dataset, unambiguous_indices)