-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpoly1305_ref.go
229 lines (193 loc) · 6.1 KB
/
poly1305_ref.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
// Copyright (c) 2016 Andreas Auernhammer. All rights reserved.
// Use of this source code is governed by a license that can be
// found in the LICENSE file.
// +build !amd64 gccgo appengine nacl
package poly1305
import "encoding/binary"
const (
msgBlock = uint32(1 << 24)
finalBlock = uint32(0)
)
// Sum generates an authenticator for msg using a one-time key and returns the
// 16-byte result. Authenticating two different messages with the same key allows
// an attacker to forge messages at will.
func Sum(msg []byte, key [32]byte) [TagSize]byte {
var (
h, r [5]uint32
s [4]uint32
)
var out [TagSize]byte
initialize(&r, &s, &key)
// process full 16-byte blocks
n := len(msg) & (^(TagSize - 1))
if n > 0 {
update(msg[:n], msgBlock, &h, &r)
msg = msg[n:]
}
if len(msg) > 0 {
var block [TagSize]byte
off := copy(block[:], msg)
block[off] = 1
update(block[:], finalBlock, &h, &r)
}
finalize(&out, &h, &s)
return out
}
// New returns a hash.Hash computing the poly1305 sum.
// Notice that Poly1305 is insecure if one key is used twice.
func New(key [32]byte) *Hash {
p := new(Hash)
initialize(&(p.r), &(p.s), &key)
return p
}
// Hash implements a Poly1305 writer interface.
// Poly1305 cannot be used like common hash.Hash implementations,
// because using a poly1305 key twice breaks its security.
// So poly1305.Hash does not support some kind of reset.
type Hash struct {
h, r [5]uint32
s [4]uint32
buf [TagSize]byte
off int
done bool
}
// Size returns the number of bytes Sum will append.
func (p *Hash) Size() int { return TagSize }
// Write adds more data to the running Poly1305 hash.
// This function should return a non-nil error if a call
// to Write happens after a call to Sum. So it is not possible
// to compute the checksum and than add more data.
func (p *Hash) Write(msg []byte) (int, error) {
if p.done {
return 0, errWriteAfterSum
}
n := len(msg)
if p.off > 0 {
dif := TagSize - p.off
if n <= dif {
p.off += copy(p.buf[p.off:], msg)
return n, nil
}
copy(p.buf[p.off:], msg[:dif])
msg = msg[dif:]
update(p.buf[:], msgBlock, &(p.h), &(p.r))
p.off = 0
}
// process full 16-byte blocks
if nn := len(msg) & (^(TagSize - 1)); nn > 0 {
update(msg[:nn], msgBlock, &(p.h), &(p.r))
msg = msg[nn:]
}
if len(msg) > 0 {
p.off += copy(p.buf[p.off:], msg)
}
return n, nil
}
// Sum appends the Pol1305 hash of the previously
// processed data to b and returns the resulting slice.
// It is safe to call this function multiple times.
func (p *Hash) Sum(b []byte) []byte {
var out [TagSize]byte
h := p.h
if p.off > 0 {
var buf [TagSize]byte
copy(buf[:], p.buf[:p.off])
buf[p.off] = 1 // invariant: p.off < TagSize
update(buf[:], finalBlock, &h, &(p.r))
}
finalize(&out, &h, &(p.s))
p.done = true
return append(b, out[:]...)
}
func initialize(r *[5]uint32, s *[4]uint32, key *[32]byte) {
r[0] = binary.LittleEndian.Uint32(key[0:]) & 0x3ffffff
r[1] = (binary.LittleEndian.Uint32(key[3:]) >> 2) & 0x3ffff03
r[2] = (binary.LittleEndian.Uint32(key[6:]) >> 4) & 0x3ffc0ff
r[3] = (binary.LittleEndian.Uint32(key[9:]) >> 6) & 0x3f03fff
r[4] = (binary.LittleEndian.Uint32(key[12:]) >> 8) & 0x00fffff
s[0] = binary.LittleEndian.Uint32(key[16:])
s[1] = binary.LittleEndian.Uint32(key[20:])
s[2] = binary.LittleEndian.Uint32(key[24:])
s[3] = binary.LittleEndian.Uint32(key[28:])
}
func update(msg []byte, flag uint32, h, r *[5]uint32) {
h0, h1, h2, h3, h4 := h[0], h[1], h[2], h[3], h[4]
r0, r1, r2, r3, r4 := uint64(r[0]), uint64(r[1]), uint64(r[2]), uint64(r[3]), uint64(r[4])
R1, R2, R3, R4 := r1*5, r2*5, r3*5, r4*5
for len(msg) >= TagSize {
// h += msg
h0 += binary.LittleEndian.Uint32(msg[0:]) & 0x3ffffff
h1 += (binary.LittleEndian.Uint32(msg[3:]) >> 2) & 0x3ffffff
h2 += (binary.LittleEndian.Uint32(msg[6:]) >> 4) & 0x3ffffff
h3 += (binary.LittleEndian.Uint32(msg[9:]) >> 6) & 0x3ffffff
h4 += (binary.LittleEndian.Uint32(msg[12:]) >> 8) | flag
// h *= r
d0 := (uint64(h0) * r0) + (uint64(h1) * R4) + (uint64(h2) * R3) + (uint64(h3) * R2) + (uint64(h4) * R1)
d1 := (d0 >> 26) + (uint64(h0) * r1) + (uint64(h1) * r0) + (uint64(h2) * R4) + (uint64(h3) * R3) + (uint64(h4) * R2)
d2 := (d1 >> 26) + (uint64(h0) * r2) + (uint64(h1) * r1) + (uint64(h2) * r0) + (uint64(h3) * R4) + (uint64(h4) * R3)
d3 := (d2 >> 26) + (uint64(h0) * r3) + (uint64(h1) * r2) + (uint64(h2) * r1) + (uint64(h3) * r0) + (uint64(h4) * R4)
d4 := (d3 >> 26) + (uint64(h0) * r4) + (uint64(h1) * r3) + (uint64(h2) * r2) + (uint64(h3) * r1) + (uint64(h4) * r0)
// h %= p
h0 = uint32(d0) & 0x3ffffff
h1 = uint32(d1) & 0x3ffffff
h2 = uint32(d2) & 0x3ffffff
h3 = uint32(d3) & 0x3ffffff
h4 = uint32(d4) & 0x3ffffff
h0 += uint32(d4>>26) * 5
h1 += h0 >> 26
h0 = h0 & 0x3ffffff
msg = msg[TagSize:]
}
h[0], h[1], h[2], h[3], h[4] = h0, h1, h2, h3, h4
}
func finalize(out *[TagSize]byte, h *[5]uint32, s *[4]uint32) {
h0, h1, h2, h3, h4 := h[0], h[1], h[2], h[3], h[4]
// h %= p reduction
h2 += h1 >> 26
h1 &= 0x3ffffff
h3 += h2 >> 26
h2 &= 0x3ffffff
h4 += h3 >> 26
h3 &= 0x3ffffff
h0 += 5 * (h4 >> 26)
h4 &= 0x3ffffff
h1 += h0 >> 26
h0 &= 0x3ffffff
// h - p
t0 := h0 + 5
t1 := h1 + (t0 >> 26)
t2 := h2 + (t1 >> 26)
t3 := h3 + (t2 >> 26)
t4 := h4 + (t3 >> 26) - (1 << 26)
t0 &= 0x3ffffff
t1 &= 0x3ffffff
t2 &= 0x3ffffff
t3 &= 0x3ffffff
// select h if h < p else h - p
t_mask := (t4 >> 31) - 1
h_mask := ^t_mask
h0 = (h0 & h_mask) | (t0 & t_mask)
h1 = (h1 & h_mask) | (t1 & t_mask)
h2 = (h2 & h_mask) | (t2 & t_mask)
h3 = (h3 & h_mask) | (t3 & t_mask)
h4 = (h4 & h_mask) | (t4 & t_mask)
// h %= 2^128
h0 |= h1 << 26
h1 = ((h1 >> 6) | (h2 << 20))
h2 = ((h2 >> 12) | (h3 << 14))
h3 = ((h3 >> 18) | (h4 << 8))
// s: the s part of the key
// tag = (h + s) % (2^128)
t := uint64(h0) + uint64(s[0])
h0 = uint32(t)
t = uint64(h1) + uint64(s[1]) + (t >> 32)
h1 = uint32(t)
t = uint64(h2) + uint64(s[2]) + (t >> 32)
h2 = uint32(t)
t = uint64(h3) + uint64(s[3]) + (t >> 32)
h3 = uint32(t)
binary.LittleEndian.PutUint32(out[0:], h0)
binary.LittleEndian.PutUint32(out[4:], h1)
binary.LittleEndian.PutUint32(out[8:], h2)
binary.LittleEndian.PutUint32(out[12:], h3)
}