-
Notifications
You must be signed in to change notification settings - Fork 236
/
Copy pathapp.py
276 lines (260 loc) · 11.3 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import os
import time
import glob
from datetime import datetime, timedelta
import numpy as np
import torch
from scipy.io.wavfile import write as write_wav
from transformers import AutoProcessor, AutoModelForTextToWaveform, BarkModel
import gradio as gr
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
import uvicorn
from apscheduler.schedulers.background import BackgroundScheduler
OUTPUT_DIR = os.environ.get("OUTPUT_DIR", "output")
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.environ.update({
"SUNO_OFFLOAD_CPU": "True",
"SUNO_USE_SMALL_MODELS": "True"
})
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = AutoProcessor.from_pretrained("suno/bark-small")
model = (BarkModel.from_pretrained("suno/bark-small", torch_dtype=torch.float16)
.to(device)
.to_bettertransformer())
def create_bark_audio(text, voice_preset, device):
inputs = processor(text, voice_preset=voice_preset)
inputs = {k: v.to(device) if hasattr(v, 'to') else v for k, v in inputs.items()}
audio_array = model.generate(**inputs)
return audio_array.cpu().numpy().squeeze(), model.generation_config.sample_rate
def save_audio(audio_array, sample_rate, prefix="audio"):
audio_array = np.clip(audio_array.astype(np.float32), -1, 1)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = os.path.join(OUTPUT_DIR, f"{prefix}_{timestamp}.wav")
write_wav(filename, sample_rate, audio_array)
return filename
def generate_speech(text, voice_preset="v2/en_speaker_6"):
device = "cuda" if torch.cuda.is_available() else "cpu"
audio_array, sample_rate = create_bark_audio(text, voice_preset, device)
return save_audio(audio_array, sample_rate)
def text_to_speech_with_url(text, voice):
audio_file = generate_speech(text, VOICES[voice])
filename = os.path.basename(audio_file)
base_url = os.environ.get("PUBLIC_URL", "http://localhost:7860")
return audio_file, f"{base_url}/generated/{filename}"
def cleanup_old_files():
cutoff_time = datetime.now() - timedelta(hours=24)
for file in glob.glob(os.path.join(OUTPUT_DIR, "audio_*.wav")):
if datetime.fromtimestamp(os.path.getmtime(file)) < cutoff_time:
try:
os.remove(file)
except Exception as e:
print(f"Error removing file {file}: {e}")
VOICES = {
'Speaker 0 (EN)':'v2/en_speaker_0',
'Speaker 1 (EN)':'v2/en_speaker_1',
'Speaker 2 (EN)':'v2/en_speaker_2',
'Speaker 3 (EN)':'v2/en_speaker_3',
'Speaker 4 (EN)':'v2/en_speaker_4',
'Speaker 5 (EN)':'v2/en_speaker_5',
'Speaker 6 (EN)':'v2/en_speaker_6',
'Speaker 7 (EN)':'v2/en_speaker_7',
'Speaker 8 (EN)':'v2/en_speaker_8',
'Speaker 9 (EN)':'v2/en_speaker_9',
'Speaker 0 (ZH)':'v2/zh_speaker_0',
'Speaker 1 (ZH)':'v2/zh_speaker_1',
'Speaker 2 (ZH)':'v2/zh_speaker_2',
'Speaker 3 (ZH)':'v2/zh_speaker_3',
'Speaker 4 (ZH)':'v2/zh_speaker_4',
'Speaker 5 (ZH)':'v2/zh_speaker_5',
'Speaker 6 (ZH)':'v2/zh_speaker_6',
'Speaker 7 (ZH)':'v2/zh_speaker_7',
'Speaker 8 (ZH)':'v2/zh_speaker_8',
'Speaker 9 (ZH)':'v2/zh_speaker_9',
'Speaker 0 (FR)':'v2/fr_speaker_0',
'Speaker 1 (FR)':'v2/fr_speaker_1',
'Speaker 2 (FR)':'v2/fr_speaker_2',
'Speaker 3 (FR)':'v2/fr_speaker_3',
'Speaker 4 (FR)':'v2/fr_speaker_4',
'Speaker 5 (FR)':'v2/fr_speaker_5',
'Speaker 6 (FR)':'v2/fr_speaker_6',
'Speaker 7 (FR)':'v2/fr_speaker_7',
'Speaker 8 (FR)':'v2/fr_speaker_8',
'Speaker 9 (FR)':'v2/fr_speaker_9',
'Speaker 0 (DE)':'v2/de_speaker_0',
'Speaker 1 (DE)':'v2/de_speaker_1',
'Speaker 2 (DE)':'v2/de_speaker_2',
'Speaker 3 (DE)':'v2/de_speaker_3',
'Speaker 4 (DE)':'v2/de_speaker_4',
'Speaker 5 (DE)':'v2/de_speaker_5',
'Speaker 6 (DE)':'v2/de_speaker_6',
'Speaker 7 (DE)':'v2/de_speaker_7',
'Speaker 8 (DE)':'v2/de_speaker_8',
'Speaker 9 (DE)':'v2/de_speaker_9',
'Speaker 0 (HI)':'v2/hi_speaker_0',
'Speaker 1 (HI)':'v2/hi_speaker_1',
'Speaker 2 (HI)':'v2/hi_speaker_2',
'Speaker 3 (HI)':'v2/hi_speaker_3',
'Speaker 4 (HI)':'v2/hi_speaker_4',
'Speaker 5 (HI)':'v2/hi_speaker_5',
'Speaker 6 (HI)':'v2/hi_speaker_6',
'Speaker 7 (HI)':'v2/hi_speaker_7',
'Speaker 8 (HI)':'v2/hi_speaker_8',
'Speaker 9 (HI)':'v2/hi_speaker_9',
'Speaker 0 (IT)':'v2/it_speaker_0',
'Speaker 1 (IT)':'v2/it_speaker_1',
'Speaker 2 (IT)':'v2/it_speaker_2',
'Speaker 3 (IT)':'v2/it_speaker_3',
'Speaker 4 (IT)':'v2/it_speaker_4',
'Speaker 5 (IT)':'v2/it_speaker_5',
'Speaker 6 (IT)':'v2/it_speaker_6',
'Speaker 7 (IT)':'v2/it_speaker_7',
'Speaker 8 (IT)':'v2/it_speaker_8',
'Speaker 9 (IT)':'v2/it_speaker_9',
'Speaker 0 (JA)':'v2/ja_speaker_0',
'Speaker 1 (JA)':'v2/ja_speaker_1',
'Speaker 2 (JA)':'v2/ja_speaker_2',
'Speaker 3 (JA)':'v2/ja_speaker_3',
'Speaker 4 (JA)':'v2/ja_speaker_4',
'Speaker 5 (JA)':'v2/ja_speaker_5',
'Speaker 6 (JA)':'v2/ja_speaker_6',
'Speaker 7 (JA)':'v2/ja_speaker_7',
'Speaker 8 (JA)':'v2/ja_speaker_8',
'Speaker 9 (JA)':'v2/ja_speaker_9',
'Speaker 0 (KO)':'v2/ko_speaker_0',
'Speaker 1 (KO)':'v2/ko_speaker_1',
'Speaker 2 (KO)':'v2/ko_speaker_2',
'Speaker 3 (KO)':'v2/ko_speaker_3',
'Speaker 4 (KO)':'v2/ko_speaker_4',
'Speaker 5 (KO)':'v2/ko_speaker_5',
'Speaker 6 (KO)':'v2/ko_speaker_6',
'Speaker 7 (KO)':'v2/ko_speaker_7',
'Speaker 8 (KO)':'v2/ko_speaker_8',
'Speaker 9 (KO)':'v2/ko_speaker_9',
'Speaker 0 (PL)':'v2/pl_speaker_0',
'Speaker 1 (PL)':'v2/pl_speaker_1',
'Speaker 2 (PL)':'v2/pl_speaker_2',
'Speaker 3 (PL)':'v2/pl_speaker_3',
'Speaker 4 (PL)':'v2/pl_speaker_4',
'Speaker 5 (PL)':'v2/pl_speaker_5',
'Speaker 6 (PL)':'v2/pl_speaker_6',
'Speaker 7 (PL)':'v2/pl_speaker_7',
'Speaker 8 (PL)':'v2/pl_speaker_8',
'Speaker 9 (PL)':'v2/pl_speaker_9',
'Speaker 0 (PT)':'v2/pt_speaker_0',
'Speaker 1 (PT)':'v2/pt_speaker_1',
'Speaker 2 (PT)':'v2/pt_speaker_2',
'Speaker 3 (PT)':'v2/pt_speaker_3',
'Speaker 4 (PT)':'v2/pt_speaker_4',
'Speaker 5 (PT)':'v2/pt_speaker_5',
'Speaker 6 (PT)':'v2/pt_speaker_6',
'Speaker 7 (PT)':'v2/pt_speaker_7',
'Speaker 8 (PT)':'v2/pt_speaker_8',
'Speaker 9 (PT)':'v2/pt_speaker_9',
'Speaker 0 (RU)':'v2/ru_speaker_0',
'Speaker 1 (RU)':'v2/ru_speaker_1',
'Speaker 2 (RU)':'v2/ru_speaker_2',
'Speaker 3 (RU)':'v2/ru_speaker_3',
'Speaker 4 (RU)':'v2/ru_speaker_4',
'Speaker 5 (RU)':'v2/ru_speaker_5',
'Speaker 6 (RU)':'v2/ru_speaker_6',
'Speaker 7 (RU)':'v2/ru_speaker_7',
'Speaker 8 (RU)':'v2/ru_speaker_8',
'Speaker 9 (RU)':'v2/ru_speaker_9',
'Speaker 0 (ES)':'v2/es_speaker_0',
'Speaker 1 (ES)':'v2/es_speaker_1',
'Speaker 2 (ES)':'v2/es_speaker_2',
'Speaker 3 (ES)':'v2/es_speaker_3',
'Speaker 4 (ES)':'v2/es_speaker_4',
'Speaker 5 (ES)':'v2/es_speaker_5',
'Speaker 6 (ES)':'v2/es_speaker_6',
'Speaker 7 (ES)':'v2/es_speaker_7',
'Speaker 8 (ES)':'v2/es_speaker_8',
'Speaker 9 (ES)':'v2/es_speaker_9',
'Speaker 0 (TR)':'v2/tr_speaker_0',
'Speaker 1 (TR)':'v2/tr_speaker_1',
'Speaker 2 (TR)':'v2/tr_speaker_2',
'Speaker 3 (TR)':'v2/tr_speaker_3',
'Speaker 4 (TR)':'v2/tr_speaker_4',
'Speaker 5 (TR)':'v2/tr_speaker_5',
'Speaker 6 (TR)':'v2/tr_speaker_6',
'Speaker 7 (TR)':'v2/tr_speaker_7',
'Speaker 8 (TR)':'v2/tr_speaker_8',
'Speaker 9 (TR)':'v2/tr_speaker_9',
}
CUSTOM_CSS = """
#component-16 { display: none !important; }
.gradio-container .main h1 { padding-top: 60px; position: relative; }
.gradio-container .main h1::before {
content: '';
position: absolute;
top: 0;
left: 50%;
transform: translateX(-50%);
width: 253px;
height: 50px;
background-image: url('public/AkashLogo.svg');
background-repeat: no-repeat;
background-position: center;
background-size: contain;
}
"""
with gr.Blocks(css=CUSTOM_CSS) as gradio_audio:
gr.Interface(
fn=text_to_speech_with_url,
inputs=[
gr.Textbox(label="Text to audio", placeholder="Enter text here...", show_copy_button=False),
gr.Dropdown(choices=list(VOICES.keys()), value="Speaker 0 (EN)", label="Voice")
],
outputs=[
gr.Audio(label="Generated Speech"),
gr.Textbox(label="Public URL", interactive=False, show_copy_button=True)
],
title="Audio Generator",
description="""
Transform text into natural-sounding speech using the Bark AI model.
Features support for multiple languages and voice styles.
**How to use:**
1. Enter your text in any supported language
2. Select a voice preset
3. Click submit to generate speech
4. Get the public URL to share/download the generated audio (it will expire in 24 hours)
""",
article="""<div style="text-align: center">Powered by <a href="https://huggingface.co/suno/bark-small">Bark-small</a> model and <a href="https://akash.network">Akash Network</a>, created by <a href="https://github.com/alexx855">alexx855</a></div>""",
examples=[
["Welcome to the news. Today's top story...", "Speaker 0 (EN)"],
["The quick brown fox jumps over the lazy dog.", "Speaker 1 (EN)"],
["你好,今天天气真不错。", "Speaker 0 (ZH)"],
["Bonjour, comment allez-vous aujourd'hui?", "Speaker 0 (FR)"],
["J'aime beaucoup voyager en France.", "Speaker 1 (FR)"],
["Guten Tag, wie geht es Ihnen?", "Speaker 0 (DE)"],
["Das Wetter ist heute sehr schön.", "Speaker 1 (DE)"],
["नमस्ते, आप कैसे हैं?", "Speaker 0 (HI)"],
["मौसम बहुत सुहावन�� है।", "Speaker 1 (HI)"],
["Buongiorno, come stai oggi?", "Speaker 0 (IT)"],
["Mi piace molto viaggiare in Italia.", "Speaker 1 (IT)"],
["こんにちは、お元気ですか?", "Speaker 0 (JA)"],
["今日はとても良い天気ですね。", "Speaker 1 (JA)"],
["안녕하세요, 오늘 기분이 어떠신가요?", "Speaker 0 (KO)"],
["날씨가 정말 좋네요.", "Speaker 1 (KO)"],
["Dzień dobry, jak się masz?", "Speaker 0 (PL)"],
["Dzisiaj jest bardzo ładna pogoda.", "Speaker 1 (PL)"],
["Olá, como está você hoje?", "Speaker 0 (PT)"],
["O tempo está muito bonito hoje.", "Speaker 1 (PT)"],
["Здравствуйте, как ваши дела?", "Speaker 0 (RU)"],
["Сегодня прекрасная погода.", "Speaker 1 (RU)"],
["Hola, ¿cómo estás hoy?", "Speaker 0 (ES)"],
["El tiempo está muy bonito hoy.", "Speaker 1 (ES)"],
["Merhaba, bugün nasılsınız?", "Speaker 0 (TR)"],
["Bugün hava çok güzel.", "Speaker 1 (TR)"]
]
)
scheduler = BackgroundScheduler()
scheduler.add_job(cleanup_old_files, 'interval', hours=1)
scheduler.start()
if __name__ == "__main__":
app = FastAPI()
app.mount("/generated", StaticFiles(directory=OUTPUT_DIR), name="generated")
app.mount("/public", StaticFiles(directory="public"), name="public")
gradio_app = gr.mount_gradio_app(app, gradio_audio, path="/", favicon_path="public/favicon.ico")
uvicorn.run(app, host="0.0.0.0", port=7860)