@@ -878,7 +878,7 @@ def test_step_lr(self):
878
878
# lr = 0.0005 if epoch >= 9
879
879
epochs = 10
880
880
single_targets = [0.05 ] * 3 + [0.005 ] * 3 + [0.0005 ] * 3 + [0.00005 ] * 3
881
- targets = [single_targets , list ( map ( lambda x : x * epochs , single_targets )) ]
881
+ targets = [single_targets , [ x * epochs for x in single_targets ] ]
882
882
scheduler = StepLR (self .opt , gamma = 0.1 , step_size = 3 )
883
883
self ._test (scheduler , targets , epochs )
884
884
@@ -897,7 +897,7 @@ def test_get_last_lr_multi_step_lr(self):
897
897
# lr = 0.00005 if 9 <= epoch
898
898
epochs = 10
899
899
single_targets = [0.05 ] * 2 + [0.005 ] * 3 + [0.0005 ] * 4 + [0.00005 ] * 1
900
- targets = [single_targets , list ( map ( lambda x : x * epochs , single_targets )) ]
900
+ targets = [single_targets , [ x * epochs for x in single_targets ] ]
901
901
scheduler = MultiStepLR (self .opt , gamma = 0.1 , milestones = [2 , 5 , 9 ])
902
902
self ._test_get_last_lr (scheduler , targets , epochs )
903
903
@@ -908,7 +908,7 @@ def test_multi_step_lr(self):
908
908
# lr = 0.00005 if epoch >= 9
909
909
epochs = 10
910
910
single_targets = [0.05 ] * 2 + [0.005 ] * 3 + [0.0005 ] * 4 + [0.00005 ] * 3
911
- targets = [single_targets , list ( map ( lambda x : x * epochs , single_targets )) ]
911
+ targets = [single_targets , [ x * epochs for x in single_targets ] ]
912
912
scheduler = MultiStepLR (self .opt , gamma = 0.1 , milestones = [2 , 5 , 9 ])
913
913
self ._test (scheduler , targets , epochs )
914
914
@@ -919,14 +919,14 @@ def test_multi_step_lr_with_epoch(self):
919
919
# lr = 0.00005 if epoch >= 9
920
920
epochs = 10
921
921
single_targets = [0.05 ] * 2 + [0.005 ] * 3 + [0.0005 ] * 4 + [0.00005 ] * 3
922
- targets = [single_targets , list ( map ( lambda x : x * epochs , single_targets )) ]
922
+ targets = [single_targets , [ x * epochs for x in single_targets ] ]
923
923
scheduler = MultiStepLR (self .opt , gamma = 0.1 , milestones = [2 , 5 , 9 ])
924
924
self ._test_with_epoch (scheduler , targets , epochs )
925
925
926
926
def test_exp_lr (self ):
927
927
epochs = 10
928
928
single_targets = [0.05 * (0.9 ** x ) for x in range (epochs )]
929
- targets = [single_targets , list ( map ( lambda x : x * epochs , single_targets )) ]
929
+ targets = [single_targets , [ x * epochs for x in single_targets ] ]
930
930
scheduler = ExponentialLR (self .opt , gamma = 0.9 )
931
931
self ._test (scheduler , targets , epochs )
932
932
@@ -936,7 +936,7 @@ def test_cos_anneal_lr(self):
936
936
single_targets = [eta_min + (0.05 - eta_min ) *
937
937
(1 + math .cos (math .pi * x / epochs )) / 2
938
938
for x in range (epochs )]
939
- targets = [single_targets , list ( map ( lambda x : x * epochs , single_targets )) ]
939
+ targets = [single_targets , [ x * epochs for x in single_targets ] ]
940
940
scheduler = CosineAnnealingLR (self .opt , T_max = epochs , eta_min = eta_min )
941
941
self ._test (scheduler , targets , epochs )
942
942
@@ -1058,7 +1058,7 @@ def test_compound_step_and_exp_lr(self):
1058
1058
single_targets += [0.005 * (0.9 ** x ) for x in range (3 , 6 )]
1059
1059
single_targets += [0.0005 * (0.9 ** x ) for x in range (6 , 9 )]
1060
1060
single_targets += [0.00005 * (0.9 ** x ) for x in range (9 , 12 )]
1061
- targets = [single_targets , list ( map ( lambda x : x * epochs , single_targets )) ]
1061
+ targets = [single_targets , [ x * epochs for x in single_targets ] ]
1062
1062
schedulers [0 ] = StepLR (self .opt , gamma = 0.1 , step_size = 3 )
1063
1063
schedulers [1 ] = ExponentialLR (self .opt , gamma = 0.9 )
1064
1064
self ._test (schedulers , targets , epochs )
@@ -1070,7 +1070,7 @@ def test_compound_exp_and_multistep_lr(self):
1070
1070
single_targets += [0.005 * (0.9 ** x ) for x in range (2 , 5 )]
1071
1071
single_targets += [0.0005 * (0.9 ** x ) for x in range (5 , 9 )]
1072
1072
single_targets += [0.00005 * (0.9 ** x ) for x in range (9 , 11 )]
1073
- targets = [single_targets , list ( map ( lambda x : x * epochs , single_targets )) ]
1073
+ targets = [single_targets , [ x * epochs for x in single_targets ] ]
1074
1074
schedulers [0 ] = MultiStepLR (self .opt , gamma = 0.1 , milestones = [2 , 5 , 9 ])
1075
1075
schedulers [1 ] = ExponentialLR (self .opt , gamma = 0.9 )
1076
1076
self ._test (schedulers , targets , epochs )
@@ -1082,7 +1082,7 @@ def test_compound_cosanneal_and_step_lr(self):
1082
1082
(1 + math .cos (math .pi * x / epochs )) / 2
1083
1083
for x in range (epochs )]
1084
1084
single_targets = [x * 0.1 ** (i // 3 ) for i , x in enumerate (single_targets )]
1085
- targets = [single_targets , list ( map ( lambda x : x * epochs , single_targets )) ]
1085
+ targets = [single_targets , [ x * epochs for x in single_targets ] ]
1086
1086
schedulers = [None ] * 2
1087
1087
schedulers [0 ] = CosineAnnealingLR (self .opt , T_max = epochs , eta_min = eta_min )
1088
1088
schedulers [1 ] = StepLR (self .opt , gamma = 0.1 , step_size = 3 )
@@ -1096,7 +1096,7 @@ def test_compound_cosanneal_and_multistep_lr(self):
1096
1096
for x in range (epochs )]
1097
1097
multipliers = [1 ] * 2 + [0.1 ] * 3 + [0.01 ] * 4 + [0.001 ]
1098
1098
single_targets = [x * y for x , y in zip (single_targets , multipliers )]
1099
- targets = [single_targets , list ( map ( lambda x : x * epochs , single_targets )) ]
1099
+ targets = [single_targets , [ x * epochs for x in single_targets ] ]
1100
1100
schedulers = [None ] * 2
1101
1101
schedulers [0 ] = CosineAnnealingLR (self .opt , T_max = epochs , eta_min = eta_min )
1102
1102
schedulers [1 ] = MultiStepLR (self .opt , gamma = 0.1 , milestones = [2 , 5 , 9 ])
@@ -1110,7 +1110,7 @@ def test_compound_cosanneal_and_exp_lr(self):
1110
1110
for x in range (epochs )]
1111
1111
multipliers = [0.1 ** i for i in range (epochs )]
1112
1112
single_targets = [x * y for x , y in zip (single_targets , multipliers )]
1113
- targets = [single_targets , list ( map ( lambda x : x * epochs , single_targets )) ]
1113
+ targets = [single_targets , [ x * epochs for x in single_targets ] ]
1114
1114
schedulers = [None ] * 2
1115
1115
schedulers [0 ] = CosineAnnealingLR (self .opt , T_max = epochs , eta_min = eta_min )
1116
1116
schedulers [1 ] = ExponentialLR (self .opt , gamma = 0.1 )
@@ -1222,8 +1222,8 @@ def test_cycle_lr_exp_range_mode_one_lr(self):
1222
1222
diff_lr = max_lr - base_lr
1223
1223
gamma = 0.9
1224
1224
xs = [0 , 0.25 , 0.5 , 0.75 , 1 , 0.75 , 0.50 , 0.25 , 0 , 0.25 , 0.5 , 0.75 , 1 ]
1225
- lr_target = list ( map ( lambda x : base_lr + x [ 1 ] * diff_lr * gamma ** x [ 0 ], enumerate (xs )))
1226
- momentum_target = list ( map ( lambda x : max_lr - x [ 1 ] * diff_lr * gamma ** x [ 0 ], enumerate (xs )))
1225
+ lr_target = [ base_lr + x * diff_lr * gamma ** i for i , x in enumerate (xs )]
1226
+ momentum_target = [ max_lr - x * diff_lr * gamma ** i for i , x in enumerate (xs )]
1227
1227
lr_targets = [lr_target , lr_target ]
1228
1228
momentum_targets = [momentum_target , momentum_target ]
1229
1229
scheduler = CyclicLR (self .opt , base_lr = base_lr ,
@@ -1234,10 +1234,10 @@ def test_cycle_lr_exp_range_mode_one_lr(self):
1234
1234
1235
1235
def test_cycle_lr_triangular_mode (self ):
1236
1236
lr_target_1 = [1 , 2 , 3 , 4 , 5 , 4 , 3 , 2 , 1 , 2 , 3 ]
1237
- lr_target_2 = list ( map ( lambda x : x + 1 , lr_target_1 ))
1237
+ lr_target_2 = [ x + 1 for x in lr_target_1 ]
1238
1238
lr_targets = [lr_target_1 , lr_target_2 ]
1239
1239
momentum_target_1 = [5 , 4 , 3 , 2 , 1 , 2 , 3 , 4 , 5 , 4 , 3 ]
1240
- momentum_target_2 = list ( map ( lambda x : x + 1 , momentum_target_1 ))
1240
+ momentum_target_2 = [ x + 1 for x in momentum_target_1 ]
1241
1241
momentum_targets = [momentum_target_1 , momentum_target_2 ]
1242
1242
scheduler = CyclicLR (self .opt , base_lr = [1 , 2 ], max_lr = [5 , 6 ], step_size_up = 4 ,
1243
1243
cycle_momentum = True , base_momentum = [1 , 2 ], max_momentum = [5 , 6 ],
@@ -1247,11 +1247,11 @@ def test_cycle_lr_triangular_mode(self):
1247
1247
def test_cycle_lr_triangular2_mode (self ):
1248
1248
lr_target_1 = [1 , 2 , 3 , 4 , 5 , 4 , 3 , 2 , 1 , 1.5 , 2.0 , 2.5 , 3.0 , 2.5 , 2.0 , 1.5 , 1 ,
1249
1249
1.25 , 1.50 , 1.75 , 2.00 , 1.75 ]
1250
- lr_target_2 = list ( map ( lambda x : x + 2 , lr_target_1 ))
1250
+ lr_target_2 = [ x + 2 for x in lr_target_1 ]
1251
1251
lr_targets = [lr_target_1 , lr_target_2 ]
1252
1252
momentum_target_1 = [5.0 , 4.0 , 3.0 , 2.0 , 1.0 , 2.0 , 3.0 , 4.0 , 5.0 , 4.5 , 4.0 , 3.5 ,
1253
1253
3.0 , 3.5 , 4.0 , 4.5 , 5.0 , 4.75 , 4.5 , 4.25 , 4.0 , 4.25 ]
1254
- momentum_target_2 = list ( map ( lambda x : x + 2 , momentum_target_1 ))
1254
+ momentum_target_2 = [ x + 2 for x in momentum_target_1 ]
1255
1255
momentum_targets = [momentum_target_1 , momentum_target_2 ]
1256
1256
scheduler = CyclicLR (self .opt , base_lr = [1 , 3 ], max_lr = [5 , 7 ], step_size_up = 4 ,
1257
1257
cycle_momentum = True , base_momentum = [1 , 3 ], max_momentum = [5 , 7 ],
@@ -1267,11 +1267,11 @@ def test_cycle_lr_exp_range_mode(self):
1267
1267
1268
1268
gamma = 0.9
1269
1269
xs = [0 , 0.25 , 0.5 , 0.75 , 1 , 0.75 , 0.50 , 0.25 , 0 , 0.25 , 0.5 , 0.75 , 1 ]
1270
- lr_target_1 = list ( map ( lambda x : base_lr_1 + x [ 1 ] * diff_lr_1 * gamma ** x [ 0 ], enumerate (xs )))
1271
- lr_target_2 = list ( map ( lambda x : base_lr_2 + x [ 1 ] * diff_lr_2 * gamma ** x [ 0 ], enumerate (xs )))
1270
+ lr_target_1 = [ base_lr_1 + x * diff_lr_1 * gamma ** i for i , x in enumerate (xs )]
1271
+ lr_target_2 = [ base_lr_2 + x * diff_lr_2 * gamma ** i for i , x in enumerate (xs )]
1272
1272
lr_targets = [lr_target_1 , lr_target_2 ]
1273
- momentum_target_1 = list ( map ( lambda x : max_lr_1 - x [ 1 ] * diff_lr_1 * gamma ** x [ 0 ], enumerate (xs )))
1274
- momentum_target_2 = list ( map ( lambda x : max_lr_2 - x [ 1 ] * diff_lr_2 * gamma ** x [ 0 ], enumerate (xs )))
1273
+ momentum_target_1 = [ max_lr_1 - x * diff_lr_1 * gamma ** i for i , x in enumerate (xs )]
1274
+ momentum_target_2 = [ max_lr_2 - x * diff_lr_2 * gamma ** i for i , x in enumerate (xs )]
1275
1275
momentum_targets = [momentum_target_1 , momentum_target_2 ]
1276
1276
scheduler = CyclicLR (self .opt , base_lr = [base_lr_1 , base_lr_2 ],
1277
1277
max_lr = [max_lr_1 , max_lr_2 ], step_size_up = 4 ,
0 commit comments