forked from LiJunnan1992/MLNT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline.py
174 lines (148 loc) · 5.55 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from __future__ import print_function
import sys
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import models as models
import os
import sys
import time
import argparse
import datetime
from torch.autograd import Variable
import dataloader
parser = argparse.ArgumentParser(description='PyTorch Clothing-1M Training')
parser.add_argument('--lr', default=0.0008, type=float, help='learning_rate')
parser.add_argument('--start_epoch', default=2, type=int)
parser.add_argument('--num_epochs', default=3, type=int)
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--optim_type', default='SGD')
parser.add_argument('--seed', default=7)
parser.add_argument('--gpuid', default=1, type=int)
parser.add_argument('--id', default='cross_entropy')
args = parser.parse_args()
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
# Hyper Parameter settings
use_cuda = torch.cuda.is_available()
def save_checkpoint(state, filename='checkpoint.pth.tar'):
torch.save(state, filename)
# Training
def train(epoch):
net.train()
train_loss = 0
correct = 0
total = 0
learning_rate = args.lr
if epoch > args.start_epoch:
learning_rate=learning_rate/10
for param_group in optimizer.param_groups:
param_group['lr'] = learning_rate
print('\n=> %s Training Epoch #%d, LR=%.4f' %(args.id,epoch, learning_rate))
for batch_idx, (inputs, targets) in enumerate(train_loader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda() # GPU settings
optimizer.zero_grad()
inputs, targets = Variable(inputs), Variable(targets)
outputs = net(inputs) # Forward Propagation
loss = criterion(outputs, targets) # Loss
loss.backward() # Backward Propagation
optimizer.step() # Optimizer update
train_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
sys.stdout.write('\r')
sys.stdout.write('| Epoch [%3d/%3d] Iter[%3d/%3d]\t\tLoss: %.4f Acc@1: %.3f%%'
%(epoch, args.num_epochs, batch_idx+1, (len(train_loader.dataset)//args.batch_size)+1, loss.data[0], 100.*correct/total))
sys.stdout.flush()
if batch_idx%1000==0:
val(epoch)
net.train()
def val(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(val_loader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs, volatile=True), Variable(targets)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
# Save checkpoint when best model
acc = 100.*correct/total
print("\n| Validation Epoch #%d\t\t\tLoss: %.4f Acc@1: %.2f%%" %(epoch, loss.data[0], acc))
record.write('Validation Acc: %f\n'%acc)
record.flush()
if acc > best_acc:
best_acc = acc
print('| Saving Best Model ...')
save_point = './checkpoint/%s.pth.tar'%(args.id)
save_checkpoint({
'state_dict': net.state_dict(),
}, save_point)
def test():
global test_acc
test_net.eval()
test_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(val_loader):
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs, volatile=True), Variable(targets)
outputs = test_net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.data[0]
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum()
acc = 100.*correct/total
test_acc = acc
record.write('Test Acc: %f\n'%acc)
os.mkdir('checkpoint')
record=open('./checkpoint/'+args.id+'_test.txt','w')
record.write('learning rate: %f\n'%args.lr)
record.flush()
loader = dataloader.clothing_dataloader(batch_size=args.batch_size,num_workers=5,shuffle=True)
train_loader,val_loader,test_loader = loader.run()
best_acc = 0
test_acc = 0
# Model
print('\nModel setup')
print('| Building net')
net = models.resnet50(pretrained=True)
net.fc = nn.Linear(2048,14)
test_net = models.resnet50(pretrained=True)
test_net.fc = nn.Linear(2048,14)
if use_cuda:
net.cuda()
test_net.cuda()
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=1e-3)
print('\nTraining model')
print('| Training Epochs = ' + str(args.num_epochs))
print('| Initial Learning Rate = ' + str(args.lr))
print('| Optimizer = ' + str(args.optim_type))
for epoch in range(1, 1+args.num_epochs):
train(epoch)
val(epoch)
print('\nTesting model')
checkpoint = torch.load('./checkpoint/%s.pth.tar'%args.id)
test_net.load_state_dict(checkpoint['state_dict'])
test()
print('* Test results : Acc@1 = %.2f%%' %(test_acc))
record.write('Test Acc: %.2f\n' %test_acc)
record.flush()
record.close()