-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrain.py
153 lines (125 loc) · 4.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import (AdamW, AutoModelForCausalLM, AutoProcessor,
get_scheduler)
from data import DocVQADataset
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load the model and processor
model = AutoModelForCausalLM.from_pretrained(
"microsoft/Florence-2-base-ft", trust_remote_code=True, revision="refs/pr/6"
).to(device)
processor = AutoProcessor.from_pretrained(
"microsoft/Florence-2-base-ft", trust_remote_code=True, revision="refs/pr/6"
)
def collate_fn(batch):
questions, answers, images = zip(*batch)
inputs = processor(
text=list(questions), images=list(images), return_tensors="pt", padding=True
).to(device)
return inputs, answers
# Create datasets
train_dataset = DocVQADataset("train")
val_dataset = DocVQADataset("validation")
# Create DataLoader
batch_size = 8
num_workers = 0
train_loader = DataLoader(
train_dataset,
batch_size=batch_size,
collate_fn=collate_fn,
num_workers=num_workers,
shuffle=True,
)
val_loader = DataLoader(
val_dataset, batch_size=batch_size, collate_fn=collate_fn, num_workers=num_workers
)
def train_model(train_loader, val_loader, model, processor, epochs=10, lr=1e-6):
optimizer = AdamW(model.parameters(), lr=lr)
num_training_steps = epochs * len(train_loader)
lr_scheduler = get_scheduler(
name="linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=num_training_steps,
)
for epoch in range(epochs):
# Training phase
model.train()
train_loss = 0
i = -1
for batch in tqdm(train_loader, desc=f"Training Epoch {epoch + 1}/{epochs}"):
i += 1
inputs, answers = batch
input_ids = inputs["input_ids"]
pixel_values = inputs["pixel_values"]
labels = processor.tokenizer(
text=answers,
return_tensors="pt",
padding=True,
return_token_type_ids=False,
).input_ids.to(device)
outputs = model(
input_ids=input_ids, pixel_values=pixel_values, labels=labels
)
loss = outputs.loss
if i % 200 == 0:
print(loss)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3,
)
generated_texts = processor.batch_decode(
generated_ids, skip_special_tokens=False
)
for generated_text, answer in zip(generated_texts, answers):
parsed_answer = processor.post_process_generation(
generated_text,
task="<DocVQA>",
image_size=(
inputs["pixel_values"].shape[-2],
inputs["pixel_values"].shape[-1],
),
)
print("GT:", answer)
print("Pred:", parsed_answer["<DocVQA>"])
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
train_loss += loss.item()
avg_train_loss = train_loss / len(train_loader)
print(f"Average Training Loss: {avg_train_loss}")
# Validation phase
model.eval()
val_loss = 0
with torch.no_grad():
for batch in tqdm(
val_loader, desc=f"Validation Epoch {epoch + 1}/{epochs}"
):
inputs, answers = batch
input_ids = inputs["input_ids"]
pixel_values = inputs["pixel_values"]
labels = processor.tokenizer(
text=answers,
return_tensors="pt",
padding=True,
return_token_type_ids=False,
).input_ids.to(device)
outputs = model(
input_ids=input_ids, pixel_values=pixel_values, labels=labels
)
loss = outputs.loss
val_loss += loss.item()
avg_val_loss = val_loss / len(val_loader)
print(f"Average Validation Loss: {avg_val_loss}")
# Save model checkpoint
output_dir = f"./model_checkpoints/epoch_{epoch+1}"
os.makedirs(output_dir, exist_ok=True)
model.save_pretrained(output_dir)
processor.save_pretrained(output_dir)
train_model(train_loader, val_loader, model, processor, epochs=3)