diff --git a/doc/source/user_guide/tutorials/data_structures/collections.rst b/doc/source/user_guide/tutorials/data_structures/collections.rst new file mode 100644 index 00000000000..94cf2b6fd0e --- /dev/null +++ b/doc/source/user_guide/tutorials/data_structures/collections.rst @@ -0,0 +1,311 @@ +.. _ref_tutorials_collections: + +=============== +DPF Collections +=============== + +.. include:: ../../links_and_refs.rst + +This tutorial demonstrates how to create and work with some DPF collections: FieldsContainer, MeshesContainer and ScopingsContainer. + +DPF collections are homogeneous groups of labeled raw data storage structures that allow you to organize and manipulate related data efficiently. Collections are essential for handling multiple time steps, frequency sets, or other labeled datasets in your analysis workflows. + +:jupyter-download-script:`Download tutorial as Python script` +:jupyter-download-notebook:`Download tutorial as Jupyter notebook` + +Introduction to Collections +--------------------------- + +Collections in DPF serve as containers that group related objects with labels. The main collection types are: + +- |FieldsContainer|: A collection of |Field| objects, typically representing results over multiple time steps or frequency sets +- |MeshesContainer|: A collection of |MeshedRegion| objects for different configurations or time steps +- |ScopingsContainer|: A collection of |Scoping| objects for organizing entity selections + +Each collection provides methods to: + +- Add, retrieve, and iterate over contained objects +- Access objects by label (time, frequency, set ID, and so on) +- Perform operations across all contained objects + +Collections are widely used in DPF workflows to provide vectorized data to operators, +allowing you to process the data in bulk or to process it in parallel whenever possible. + +Set up the Analysis +------------------- + +First, import the required modules and load a transient analysis result file that contains multiple time steps. + +.. jupyter-execute:: + + # Import the ansys.dpf.core module + import ansys.dpf.core as dpf + + # Import the examples module + from ansys.dpf.core import examples + + # Load a transient analysis with multiple time steps + result_file_path = examples.find_msup_transient() + + # Create a DataSources object + data_sources = dpf.DataSources(result_path=result_file_path) + + # Create a Model from the data sources + model = dpf.Model(data_sources=data_sources) + + # Display basic model information + print(model) + +Working with FieldsContainer +----------------------------- + +A |FieldsContainer| is the most commonly used collection in DPF. It stores multiple |Field| objects, each associated with a label such as time step or frequency. + +Extract Results into a FieldsContainer +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Extract displacement results for all time steps, which will automatically create a |FieldsContainer|. + +.. jupyter-execute:: + + # Get displacement results for all time steps + displacement_fc = model.results.displacement.on_all_time_freqs.eval() + + # Display FieldsContainer information + print(displacement_fc) + +Access Individual Fields in the Container +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +You can access individual fields by their label or index. + +.. jupyter-execute:: + + # Access field by index (first time step) + first_field = displacement_fc[0] + print(f"First field info:") + print(first_field) + + # Access field by label (specific time step) + second_time_field = displacement_fc.get_field({"time": 2}) + # Equivalent to: + second_time_field = displacement_fc.get_field_by_time_id(2) + print(f"\nSecond time step field:") + print(second_time_field) + +Create a Custom FieldsContainer +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +You can create your own |FieldsContainer| and add fields with custom labels. + +.. jupyter-execute:: + + # Create an empty FieldsContainer + custom_fc = dpf.FieldsContainer() + + # Set up labels for the container + custom_fc.labels = ["time", "zone"] + + # Create sample fields for different time steps and zones + for time_step in [1, 2]: + for zone in [1, 2]: + # Create a simple field with sample data + field = dpf.Field(location=dpf.locations.nodal, nature=dpf.natures.scalar) + + # Add some sample nodes and data + field.scoping.ids = [1, 2, 3, 4, 5] + field.data = [float(time_step * zone * i) for i in range(1, 6)] + + # Add field to container with labels + custom_fc.add_field({"time": time_step, "zone": zone}, field) + + # Display the custom FieldsContainer + print(custom_fc) + +Working with ScopingsContainer +------------------------------ + +A |ScopingsContainer| holds multiple |Scoping| objects, which define sets of entity IDs (nodes, elements, etc.). + +Create and Populate a ScopingsContainer +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Create different node selections and organize them in a |ScopingsContainer|. + +.. jupyter-execute:: + + # Get the mesh from our model + mesh = model.metadata.meshed_region + + # Create a ScopingsContainer + scopings_container = dpf.ScopingsContainer() + # Set labels for different selections + scopings_container.labels = ["selection_type"] + # Selection 1: First 10 nodes + first_nodes = dpf.Scoping(location=dpf.locations.nodal) + first_nodes.ids = list(range(1, 11)) + scopings_container.add_scoping(label_space={"selection_type": 0}, scoping=first_nodes) + # Selection 2: Every 10th node (sample) + all_node_ids = mesh.nodes.scoping.ids + every_tenth = dpf.Scoping(location=dpf.locations.nodal) + every_tenth.ids = all_node_ids[::10] # Every 10th node + scopings_container.add_scoping(label_space={"selection_type": 1}, scoping=every_tenth) + # Selection 3: Last 10 nodes + last_nodes = dpf.Scoping(location=dpf.locations.nodal) + last_nodes.ids = all_node_ids[-10:] + scopings_container.add_scoping(label_space={"selection_type": 2}, scoping=last_nodes) + + # Display ScopingsContainer information + print(scopings_container) + +Use ScopingsContainer with Operators +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +|ScopingsContainer| objects can be used with operators to apply operations to multiple selections. + +.. jupyter-execute:: + + # Create an operator to extract displacement on specific node sets + displacement_op = dpf.operators.result.displacement() + displacement_op.inputs.data_sources(data_sources) + displacement_op.inputs.mesh_scoping(scopings_container) + + # Evaluate to get results for all scopings + scoped_displacements = displacement_op.eval() + + print(f"Displacement results for different node selections:") + print(scoped_displacements) + +Working with MeshesContainer +---------------------------- + +A |MeshesContainer| stores multiple |MeshedRegion| objects. This is useful when working with different mesh configurations or time-dependent meshes. + +Create a MeshesContainer +^^^^^^^^^^^^^^^^^^^^^^^^ + +Create a |MeshesContainer| with mesh data for different analysis configurations. + +.. jupyter-execute:: + + # Create a MeshesContainer + meshes_container = dpf.MeshesContainer() + + # Set labels for different mesh configurations + meshes_container.labels = ["variation"] + + # Get the original mesh + original_mesh = model.metadata.meshed_region + + # Add original mesh + meshes_container.add_mesh({"variation": 0}, original_mesh) + + # Create a modified mesh (example: subset of elements) + # Get element scoping for first half of elements + all_element_ids = original_mesh.elements.scoping.ids + subset_element_ids = all_element_ids[:len(all_element_ids)//2] + + # Create element scoping for subset + element_scoping = dpf.Scoping(location=dpf.locations.elemental) + element_scoping.ids = subset_element_ids + + # Extract subset mesh using an operator + mesh_extract_op = dpf.operators.mesh.from_scoping() + mesh_extract_op.inputs.mesh(original_mesh) + mesh_extract_op.inputs.scoping(element_scoping) + subset_mesh = mesh_extract_op.eval() + + # Add subset mesh to container + meshes_container.add_mesh({"variation": 1}, subset_mesh) + + # Display MeshesContainer information + print(meshes_container) + +Collection Operations and Iteration +------------------------------------ + +Collections support various operations for data manipulation and analysis. + +Iterate Through Collections +^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +You can iterate through collections using different methods. + +.. jupyter-execute:: + + # Iterate through FieldsContainer by index + print("Iterating through displacement fields by index:") + for i in range(min(3, len(displacement_fc))): # Show first 3 fields + field = displacement_fc[i] + label_space = displacement_fc.get_label_space(i) + max_value = field.data.max() + print(f" Field {i}: {label_space}, max value: {max_value:.6f}") + + print("\nIterating through ScopingsContainer:") + for i, scoping in enumerate(scopings_container): + label_space = scopings_container.get_label_space(i) + print(f" Scoping {i}: {label_space}, size: {scoping.size}") + +Filter and Select from Collections +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +You can filter collections based on labels or criteria. + +.. jupyter-execute:: + + # Get specific fields from FieldsContainer by label criteria + # Get all fields of ``custom_fc`` where ``zone=1`` + zone_1_fields = custom_fc.get_fields({"zone": 1}) + print(f"\nFields in custom_fc with zone=1:") + for field in zone_1_fields: + print(field) + +Other Built-in Collection Types +------------------------------ + +DPF provides several built-in collection types for common DPF objects, implemented in their respective modules: + +- :class:`ansys.dpf.core.fields_container.FieldsContainer` for fields +- :class:`ansys.dpf.core.meshes_container.MeshesContainer` for meshes +- :class:`ansys.dpf.core.scopings_container.ScopingsContainer` for scopings + +Additionally, the following specialized collection types are available (from ``collection_base.py``): + +- :class:`ansys.dpf.core.collection_base.IntegralCollection` for integral types +- :class:`ansys.dpf.core.collection_base.IntCollection` for integers +- :class:`ansys.dpf.core.collection_base.FloatCollection` for floats +- :class:`ansys.dpf.core.collection_base.StringCollection` for strings + +These built-in collections are optimized for their respective DPF types and should be used when working with fields, meshes, scopings, or basic types. For other supported types, you can use the :py:meth:`ansys.dpf.core.collection.Collection.collection_factory` method to create a custom collection class at runtime. + +Using the Collection Factory +--------------------------- + +.. note:: + Collections can only be made for types supported by DPF. Attempting to use unsupported or arbitrary Python types will result in an error. + +The :py:meth:`ansys.dpf.core.collection.Collection.collection_factory` method allows you to create a collection class for any supported DPF type at runtime. This is useful when you want to group and manage objects that are not covered by the built-in collection types (such as FieldsContainer, MeshesContainer, or ScopingsContainer). + +For example, you can create a collection for :class:`ansys.dpf.core.DataSources` objects: + +.. jupyter-execute:: + + from ansys.dpf.core import DataSources + from ansys.dpf.core import examples + from ansys.dpf.core.collection import Collection + + # Create a collection class for DataSources + DataSourcesCollection = Collection.collection_factory(DataSources) + ds_collection = DataSourcesCollection() + ds_collection.labels = ["case"] + + # Add DataSources objects to the collection + ds1 = DataSources("path/to/first/result/file.rst") + ds2 = DataSources("path/to/second/result/file.rst") + ds_collection.add_entry({"case": 0}, ds1) + ds_collection.add_entry({"case": 1}, ds2) + + # Show the collection + print(ds_collection) + +This approach allows you to leverage the powerful labeling and grouping features of DPF collections for any supported DPF object type, making your workflows more flexible and organized. diff --git a/doc/source/user_guide/tutorials/data_structures/index.rst b/doc/source/user_guide/tutorials/data_structures/index.rst index 6043628416d..34f67fbba08 100644 --- a/doc/source/user_guide/tutorials/data_structures/index.rst +++ b/doc/source/user_guide/tutorials/data_structures/index.rst @@ -29,20 +29,16 @@ These tutorials explains how these structures work and how you can manipulate da .. grid-item-card:: DPF collections - :link: ref_tutorials_language_and_usage + :link: ref_tutorials_collections :link-type: ref :text-align: center - :class-header: sd-bg-light sd-text-dark - :class-footer: sd-bg-light sd-text-dark This tutorial shows how to create and work with some DPF collections: FieldsContainer, MeshesContainer and ScopingsContainer - +++ - Coming soon - .. toctree:: :maxdepth: 2 :hidden: data_arrays.rst + collections.rst