|
| 1 | +# Copyright (C) 2021 - 2025 ANSYS, Inc. and/or its affiliates. |
| 2 | +# SPDX-License-Identifier: MIT |
| 3 | +# |
| 4 | +# |
| 5 | +# Permission is hereby granted, free of charge, to any person obtaining a copy |
| 6 | +# of this software and associated documentation files (the "Software"), to deal |
| 7 | +# in the Software without restriction, including without limitation the rights |
| 8 | +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 9 | +# copies of the Software, and to permit persons to whom the Software is |
| 10 | +# furnished to do so, subject to the following conditions: |
| 11 | +# |
| 12 | +# The above copyright notice and this permission notice shall be included in all |
| 13 | +# copies or substantial portions of the Software. |
| 14 | +# |
| 15 | +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 16 | +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 17 | +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 18 | +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 19 | +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 20 | +# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 21 | +# SOFTWARE. |
| 22 | + |
| 23 | +""".. _Electrolysis_Modeling: |
| 24 | +
|
| 25 | +Electrolysis Modeling |
| 26 | +----------------------- |
| 27 | +""" |
| 28 | + |
| 29 | +# %% |
| 30 | +# Objective |
| 31 | +# --------- |
| 32 | +# |
| 33 | +# This example demonstrates the modeling of a PEM electrolyzer |
| 34 | +# using PyFluent. The simulation captures three-dimensional |
| 35 | +# multiphase flow involving liquid water and a gas mixture, |
| 36 | +# coupled with electrochemical reactions governed by |
| 37 | +# Butler–Volmer kinetics. It includes dual potential |
| 38 | +# fields representing electronic and ionic conduction, |
| 39 | +# along with porous media transport through the catalyst and |
| 40 | +# diffusion layers. The workflow employs the electrolysis |
| 41 | +# model to simulate hydrogen and oxygen generation at |
| 42 | +# the anode and cathode catalyst layers under a total |
| 43 | +# cell voltage of 1.73 V. Liquid water enters the anode |
| 44 | +# at 333.15 K with a mass flow rate of 0.000404 kg/s. |
| 45 | +# The simulation is performed under steady-state conditions, |
| 46 | +# initialized with full liquid saturation and a uniform |
| 47 | +# temperature field. |
| 48 | + |
| 49 | +# %% |
| 50 | +# Problem Description |
| 51 | +# ------------------- |
| 52 | +# |
| 53 | +# The 3D domain represents a PEM electrolyzer with an anode, |
| 54 | +# membrane, and cathode assembly, including porous and catalyst |
| 55 | +# layers, flow channels, and current collectors. Electrochemical |
| 56 | +# reactions follow Butler-Volmer kinetics with OER at the anode |
| 57 | +# and HER at the cathode. A VOF model captures gas-liquid flow, |
| 58 | +# while porous media account for Darcy flow, capillary pressure, |
| 59 | +# and contact angle effects. Dual conductivity represents both |
| 60 | +# electronic and ionic transport, with osmotic drag modeling |
| 61 | +# water transport through the membrane. The cell operates at |
| 62 | +# 1.730202 V, with liquid water entering the anode at 333.15 K |
| 63 | +# and 0.000404 kg/s. |
| 64 | +# |
| 65 | +# .. image:: ../../_static/Electrolysis_Modeling.png |
| 66 | +# :align: center |
| 67 | +# :alt: Schematic of the Electrolyzer Problem. |
| 68 | + |
| 69 | +# %% |
| 70 | +# Import modules |
| 71 | +# -------------- |
| 72 | +# |
| 73 | +# .. note:: |
| 74 | +# Importing the following classes offer streamlined access to key solver settings, |
| 75 | +# eliminating the need to manually browse through the full settings structure. |
| 76 | + |
| 77 | +import os |
| 78 | + |
| 79 | +import ansys.fluent.core as pyfluent |
| 80 | +from ansys.fluent.core import examples |
| 81 | +from ansys.fluent.core.solver import ( |
| 82 | + BoundaryConditions, |
| 83 | + Contour, |
| 84 | + Controls, |
| 85 | + Graphics, |
| 86 | + Initialization, |
| 87 | + Materials, |
| 88 | + Mesh, |
| 89 | + RunCalculation, |
| 90 | + Setup, |
| 91 | +) |
| 92 | + |
| 93 | +# %% |
| 94 | +# Launch Fluent session in solver mode |
| 95 | +# ------------------------------------ |
| 96 | +solver = pyfluent.launch_fluent( |
| 97 | + precision=pyfluent.Precision.DOUBLE, |
| 98 | + mode=pyfluent.FluentMode.SOLVER, |
| 99 | +) |
| 100 | + |
| 101 | +# %% |
| 102 | +# Download mesh file |
| 103 | +# ------------------ |
| 104 | + |
| 105 | +mesh_file = examples.download_file( |
| 106 | + "electrolysis.msh.h5", |
| 107 | + "pyfluent/electrolysis", |
| 108 | + save_path=os.getcwd(), |
| 109 | +) |
| 110 | + |
| 111 | +solver.settings.file.read_mesh(file_name=mesh_file) |
| 112 | + |
| 113 | +# %% |
| 114 | +# Display mesh |
| 115 | +# ------------ |
| 116 | +graphics = Graphics(solver) |
| 117 | +mesh = Mesh(solver, new_instance_name="mesh-1") |
| 118 | + |
| 119 | + |
| 120 | +graphics.picture.x_resolution = 650 # Horizontal resolution for clear visualization |
| 121 | +graphics.picture.y_resolution = 450 # Vertical resolution matching typical aspect ratio |
| 122 | + |
| 123 | +all_walls = mesh.surfaces_list.allowed_values() |
| 124 | + |
| 125 | +mesh.surfaces_list = all_walls |
| 126 | +mesh.options.edges = True |
| 127 | +mesh.display() |
| 128 | + |
| 129 | +graphics.picture.save_picture(file_name="Electrolysis_Modeling_1.png") |
| 130 | + |
| 131 | +# %% |
| 132 | +# .. image:: ../../_static/Electrolysis_Modeling_1.png |
| 133 | +# :align: center |
| 134 | +# :alt: Mesh |
| 135 | + |
| 136 | +# %% |
| 137 | +# Enable Electrolysis Model |
| 138 | +# ------------------------- |
| 139 | +setup = Setup(solver) |
| 140 | + |
| 141 | +setup.models.echemistry = { |
| 142 | + "potential": True, |
| 143 | + "echemistry_enabled": True, |
| 144 | + "electrolysis": { |
| 145 | + "options": { |
| 146 | + "bc_type": "Total voltage", |
| 147 | + "tot_voltage": 1.730202, # V |
| 148 | + }, |
| 149 | + "parameters": { |
| 150 | + "anode_jref": 1.36e-09, # A/m² |
| 151 | + "anode_jea": 181411, # A/m² |
| 152 | + "anode_exp": 0, # Concentration exponent |
| 153 | + "cathode_jref": 200, # A/m² |
| 154 | + "cathode_jea": 24359, # A/m² |
| 155 | + "cathode_ex_a": 1, # Anodic transfer coefficient |
| 156 | + "cathode_ex_c": 1, # Cathodic transfer coefficient |
| 157 | + "open_voltage": 1.1999, # V |
| 158 | + }, |
| 159 | + "anode": { |
| 160 | + "anode_cc_zone": { |
| 161 | + "anode_cc_zone_list": ["anode_cc"], |
| 162 | + "anode_cc_material": "collector-default", |
| 163 | + }, |
| 164 | + "anode_fc_zone": {"anode_fc_zone_list": ["anode_fc"]}, |
| 165 | + "anode_pl_zone": { |
| 166 | + "anode_pl_zone_list": ["anode_pl"], |
| 167 | + "anode_pl_material": "porous-default", |
| 168 | + "anode_pl_porosity": 0.75, # Porosity of porous layer |
| 169 | + "anode_pl_kr": 4.9e-11, # m² Absolute permeability |
| 170 | + "anode_pl_angle": 70, # Degrees |
| 171 | + }, |
| 172 | + "anode_cl_zone": { |
| 173 | + "anode_cl_zone_list": ["anode_cl"], |
| 174 | + "anode_cl_material": "catalyst-default", |
| 175 | + "anode_cl_porosity": 0.2, # Catalyst layer porosity |
| 176 | + "anode_cl_kr": 4.9e-12, # m² Catalyst layer permeability |
| 177 | + "anode_cl_angle": 80, # Degrees |
| 178 | + }, |
| 179 | + }, |
| 180 | + "electrolyte": { |
| 181 | + "mem_zone": { |
| 182 | + "mem_zone_list": ["mem"], |
| 183 | + "mem_material": "electrolyte-default", |
| 184 | + } |
| 185 | + }, |
| 186 | + "cathode": { |
| 187 | + "cathode_cc_zone": { |
| 188 | + "cathode_cc_zone_list": ["cathode_cc"], |
| 189 | + "cathode_cc_material": "collector-default", |
| 190 | + }, |
| 191 | + "cathode_fc_zone": {"cathode_fc_zone_list": ["cathode_fc"]}, |
| 192 | + "cathode_pl_zone": { |
| 193 | + "cathode_pl_zone_list": ["cathode_pl"], |
| 194 | + "cathode_pl_material": "porous-default", |
| 195 | + "cathode_pl_porosity": 0.75, # Porosity |
| 196 | + "cathode_pl_kr": 1e-11, # m² Permeability |
| 197 | + }, |
| 198 | + "cathode_cl_zone": { |
| 199 | + "cathode_cl_zone_list": ["cathode_cl"], |
| 200 | + "cathode_cl_material": "catalyst-default", |
| 201 | + "cathode_cl_porosity": 0.2, # Catalyst layer porosity |
| 202 | + "cathode_cl_kr": 2e-12, # m² Permeability |
| 203 | + }, |
| 204 | + }, |
| 205 | + "electrical_tab": { |
| 206 | + "anode_tab": ["anode_tab", "anode_tab.1", "anode_tab.1.1"], |
| 207 | + "cathode_tab": ["cathode_tab", "cathode_tab.1", "cathode_tab.1.1"], |
| 208 | + }, |
| 209 | + }, |
| 210 | +} |
| 211 | + |
| 212 | +# %% |
| 213 | +# Define solid materials |
| 214 | +# ---------------------- |
| 215 | +materials = Materials(solver) |
| 216 | + |
| 217 | +# Current collector |
| 218 | +materials.solid["collector-default"] = { |
| 219 | + "electric_conductivity": {"value": 20000} # S/m |
| 220 | +} |
| 221 | + |
| 222 | +# Porous layer |
| 223 | +materials.solid["porous-default"] = {"electric_conductivity": {"value": 20000}} # S/m |
| 224 | + |
| 225 | +# Catalyst layer: dual conductivity |
| 226 | +materials.solid["catalyst-default"] = { |
| 227 | + "electric_conductivity": {"value": 5000}, # S/m Electronic |
| 228 | + "dual_electric_conductivity": {"value": 4.5}, # S/m Ionic in catalyst |
| 229 | +} |
| 230 | + |
| 231 | +# Membrane: ionic conductivity |
| 232 | +materials.solid["electrolyte-default"] = { |
| 233 | + "dual_electric_conductivity": {"value": 11} # S/m Proton conductivity |
| 234 | +} |
| 235 | + |
| 236 | +# %% |
| 237 | +# Boundary conditions |
| 238 | +# ------------------- |
| 239 | +conditions = BoundaryConditions(solver) |
| 240 | + |
| 241 | +# Mixture phase: thermal condition |
| 242 | +conditions.mass_flow_inlet["anode_in"] = { |
| 243 | + "phase": {"mixture": {"thermal": {"total_temperature": {"value": 333.15}}}} # K |
| 244 | +} |
| 245 | + |
| 246 | +# Phase-2 (liquid water): mass flow rate |
| 247 | +conditions.mass_flow_inlet["anode_in"] = { |
| 248 | + "phase": {"phase-2": {"momentum": {"mass_flow_rate": {"value": 0.000404}}}} # kg/s |
| 249 | +} |
| 250 | + |
| 251 | +# %% |
| 252 | +# Solution controls |
| 253 | +# ----------------- |
| 254 | + |
| 255 | +controls = Controls(solver) |
| 256 | + |
| 257 | +controls.under_relaxation = {"mp": 1} |
| 258 | + |
| 259 | +# %% |
| 260 | +# Initialize solution |
| 261 | +# ------------------- |
| 262 | +initialize = Initialization(solver) |
| 263 | + |
| 264 | +initialize.initialization_type = "standard" |
| 265 | +initialize.defaults = { |
| 266 | + "temperature": 333.15, # K |
| 267 | + "phase-2-mp": 1, # Initial volume fraction of liquid |
| 268 | +} |
| 269 | + |
| 270 | +# %% |
| 271 | +# Run calculation |
| 272 | +# --------------- |
| 273 | + |
| 274 | +calculation = RunCalculation(solver) |
| 275 | + |
| 276 | +calculation.iterate(iter_count=300) |
| 277 | + |
| 278 | +# %% |
| 279 | +# Post-processing |
| 280 | +# --------------- |
| 281 | + |
| 282 | +potential_contour = Contour(solver, new_instance_name="potential_contour") |
| 283 | + |
| 284 | +potential_contour.field = "potential" |
| 285 | +potential_contour.surfaces_list = ["zmid"] |
| 286 | +graphics.views.restore_view(view_name="front") |
| 287 | +potential_contour.display() |
| 288 | + |
| 289 | +graphics.views.restore_view(view_name="front") |
| 290 | +graphics.picture.save_picture(file_name="Electrolysis_Modeling_2.png") |
| 291 | + |
| 292 | +# %% |
| 293 | +# .. image:: ../../_static/Electrolysis_Modeling_2.png |
| 294 | +# :align: center |
| 295 | +# :alt: Potential Contour |
| 296 | + |
| 297 | +volume_fraction_contour = Contour(solver, new_instance_name="volume_fraction_contour") |
| 298 | + |
| 299 | +volume_fraction_contour.field = "phase-1-vof" |
| 300 | +volume_fraction_contour.surfaces_list = ["zmid", "xmid"] |
| 301 | + |
| 302 | +graphics.views.restore_view(view_name="isometric") |
| 303 | +volume_fraction_contour.display() |
| 304 | + |
| 305 | +graphics.picture.save_picture(file_name="Electrolysis_Modeling_3.png") |
| 306 | + |
| 307 | +# %% |
| 308 | +# .. image:: ../../_static/Electrolysis_Modeling_3.png |
| 309 | +# :align: center |
| 310 | +# :alt: Volume Fraction Contour |
| 311 | + |
| 312 | +# save case and data file |
| 313 | +solver.settings.file.write(file_type="case-data", file_name="electrolysis") |
| 314 | + |
| 315 | +# %% |
| 316 | +# Close session |
| 317 | +# ------------- |
| 318 | +solver.exit() |
| 319 | + |
| 320 | +# %% |
| 321 | +# Summary |
| 322 | +# ------- |
| 323 | +# |
| 324 | +# In this example, we used PyFluent to simulate a complete PEM |
| 325 | +# electrolysis process under steady-state conditions. The model |
| 326 | +# applies Butler-Volmer electrochemistry with a total cell voltage |
| 327 | +# boundary condition and includes dual conductivity in catalyst |
| 328 | +# layers, multiphase VOF flow, and porous media transport. Effects |
| 329 | +# such as osmotic drag and capillary pressure capture water |
| 330 | +# management within the cell. The workflow defines zones, assigns |
| 331 | +# materials, sets inlet conditions, and solves for coupled |
| 332 | +# electrochemical and flow fields. |
| 333 | + |
| 334 | +# %% |
| 335 | +# References: |
| 336 | +# ----------- |
| 337 | +# [1] Electrolysis Modeling, `Ansys Fluent documentation <https://ansyshelp.ansys.com/public/account/secured?returnurl=/Views/Secured/corp/v252/en/flu_tg/flu_tg_electrolysis.html>`_. |
| 338 | + |
| 339 | +# sphinx_gallery_thumbnail_path = '_static/Electrolysis_Modeling.png' |
0 commit comments