You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
distributed_backend=nccl
All distributed processes registered. Starting with 1 processes
You are using a CUDA device ('NVIDIA GeForce RTX 3090') that has Tensor Cores. To properly utilize them, you should set torch.set_float32_matmul_precision('medium' | 'high') which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/torch/utils/tensorboard/init.py:4: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
if not hasattr(tensorboard, "version") or LooseVersion(
/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/torch/utils/tensorboard/init.py:6: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
) < LooseVersion("1.15"):
Testing DataLoader 0: 1%|█▋ | 1/99 [00:00<00:16, 6.08it/s]/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/skvideo/io/ffmpeg.py:466: DeprecationWarning: tostring() is deprecated. Use tobytes() instead.
self._proc.stdin.write(vid.tostring())
Traceback (most recent call last):
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/skvideo/io/ffmpeg.py", line 466, in writeFrame
self._proc.stdin.write(vid.tostring())
BrokenPipeError: [Errno 32] Broken pipe
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/root/autodl-tmp/CoDeF/train.py", line 557, in
main(hparams)
File "/root/autodl-tmp/CoDeF/train.py", line 550, in main
trainer.test(system, dataloaders=system.test_dataloader())
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 706, in test
return call._call_and_handle_interrupt(
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py", line 42, in _call_and_handle_interrupt
return trainer.strategy.launcher.launch(trainer_fn, *args, trainer=trainer, **kwargs)
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/pytorch_lightning/strategies/launchers/subprocess_script.py", line 92, in launch
return function(*args, **kwargs)
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 749, in _test_impl
results = self._run(model, ckpt_path=ckpt_path)
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 935, in _run
results = self._run_stage()
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 971, in _run_stage
return self._evaluation_loop.run()
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/pytorch_lightning/loops/utilities.py", line 177, in _decorator
return loop_run(self, *args, **kwargs)
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/pytorch_lightning/loops/evaluation_loop.py", line 115, in run
self._evaluation_step(batch, batch_idx, dataloader_idx)
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/pytorch_lightning/loops/evaluation_loop.py", line 375, in _evaluation_step
output = call._call_strategy_hook(trainer, hook_name, *step_kwargs.values())
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py", line 288, in _call_strategy_hook
output = fn(*args, **kwargs)
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/pytorch_lightning/strategies/ddp.py", line 348, in test_step
return self.model.test_step(*args, **kwargs)
File "/root/autodl-tmp/CoDeF/train.py", line 489, in test_step
self.video_visualizer.add(img)
File "/root/autodl-tmp/CoDeF/utils/video_visualizer.py", line 95, in add
self.video.writeFrame(frame)
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/skvideo/io/ffmpeg.py", line 471, in writeFrame
raise IOError(msg)
OSError: [Errno 32] Broken pipe
distributed_backend=nccl
All distributed processes registered. Starting with 1 processes
You are using a CUDA device ('NVIDIA GeForce RTX 3090') that has Tensor Cores. To properly utilize them, you should set
torch.set_float32_matmul_precision('medium' | 'high')
which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precisionLOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/torch/utils/tensorboard/init.py:4: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
if not hasattr(tensorboard, "version") or LooseVersion(
/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/torch/utils/tensorboard/init.py:6: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
) < LooseVersion("1.15"):
Testing DataLoader 0: 1%|█▋ | 1/99 [00:00<00:16, 6.08it/s]/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/skvideo/io/ffmpeg.py:466: DeprecationWarning: tostring() is deprecated. Use tobytes() instead.
self._proc.stdin.write(vid.tostring())
Traceback (most recent call last):
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/skvideo/io/ffmpeg.py", line 466, in writeFrame
self._proc.stdin.write(vid.tostring())
BrokenPipeError: [Errno 32] Broken pipe
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/root/autodl-tmp/CoDeF/train.py", line 557, in
main(hparams)
File "/root/autodl-tmp/CoDeF/train.py", line 550, in main
trainer.test(system, dataloaders=system.test_dataloader())
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 706, in test
return call._call_and_handle_interrupt(
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py", line 42, in _call_and_handle_interrupt
return trainer.strategy.launcher.launch(trainer_fn, *args, trainer=trainer, **kwargs)
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/pytorch_lightning/strategies/launchers/subprocess_script.py", line 92, in launch
return function(*args, **kwargs)
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 749, in _test_impl
results = self._run(model, ckpt_path=ckpt_path)
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 935, in _run
results = self._run_stage()
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/pytorch_lightning/trainer/trainer.py", line 971, in _run_stage
return self._evaluation_loop.run()
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/pytorch_lightning/loops/utilities.py", line 177, in _decorator
return loop_run(self, *args, **kwargs)
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/pytorch_lightning/loops/evaluation_loop.py", line 115, in run
self._evaluation_step(batch, batch_idx, dataloader_idx)
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/pytorch_lightning/loops/evaluation_loop.py", line 375, in _evaluation_step
output = call._call_strategy_hook(trainer, hook_name, *step_kwargs.values())
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/pytorch_lightning/trainer/call.py", line 288, in _call_strategy_hook
output = fn(*args, **kwargs)
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/pytorch_lightning/strategies/ddp.py", line 348, in test_step
return self.model.test_step(*args, **kwargs)
File "/root/autodl-tmp/CoDeF/train.py", line 489, in test_step
self.video_visualizer.add(img)
File "/root/autodl-tmp/CoDeF/utils/video_visualizer.py", line 95, in add
self.video.writeFrame(frame)
File "/root/miniconda3/envs/CoDeF/lib/python3.10/site-packages/skvideo/io/ffmpeg.py", line 471, in writeFrame
raise IOError(msg)
OSError: [Errno 32] Broken pipe
FFMPEG COMMAND:
/usr/local/bin/ffmpeg -y -f rawvideo -pix_fmt rgb24 -s 540x960 -i - -r 30.00 -s 540x960 -vcodec libx264 -crf 1 -pix_fmt yuv420p /root/autodl-tmp/CoDeF/results/all_sequences/scene_0/base/scene_0_base.mp4
FFMPEG STDERR OUTPUT:
Testing DataLoader 0: 1%| | 1/99 [00:00<00:54, 1.80it/s]
(CoDeF) root@autodl-container-495811b6ae-4fe7c681:
/autodl-tmp/CoDeF# ffmpeg20.04.1)ffmpeg version 5.1.2 Copyright (c) 2000-2022 the FFmpeg developers
built with gcc 9 (Ubuntu 9.4.0-1ubuntu1
configuration:
libavutil 57. 28.100 / 57. 28.100
libavcodec 59. 37.100 / 59. 37.100
libavformat 59. 27.100 / 59. 27.100
libavdevice 59. 7.100 / 59. 7.100
libavfilter 8. 44.100 / 8. 44.100
libswscale 6. 7.100 / 6. 7.100
libswresample 4. 7.100 / 4. 7.100
Hyper fast Audio and Video encoder
usage: ffmpeg [options] [[infile options] -i infile]... {[outfile options] outfile}...
Use -h to get full help or, even better, run 'man ffmpeg'
The text was updated successfully, but these errors were encountered: